雷达辐射源识别技术综述
本博客是我在阅读雷达辐射源识别领域多篇文献后的总结,主要围绕雷达辐射源识别技术,从时间发展脉络、处理数据类型、核心分类器、识别性能评估及技术挑战与趋势五个维度,以表格、公式及分点形式系统梳理各阶段关键技术、方法细节、相关研究文献及技术特点,涵盖从传统特征匹配到深度学习的主要技术谱系,同时补充性能评估指标与未来研究方向,为雷达辐射源识别领域研究人员提供更完整的技术框架参考。
一、按时间分类的雷达辐射源识别技术
该维度梳理了1970年至今雷达辐射源识别技术的发展历程,呈现从简单参数匹配到智能算法、再到深度学习的演进逻辑,并补充最新技术进展。
时间节点 | 核心技术 | 方法细节 | 相关引用 | 补充说明 |
---|---|---|---|---|
1970~1980年 | 脉冲描述字(PDW)+特征参数匹配法 | 提取雷达信号PDW参数(脉冲幅度PA、脉宽PW、载频RF、重复频率PRF、到达角AOA等),与已知模板直接匹配识别 | 汪[1]提出“通过对数据库或者知识库进行比较查询来进行雷达属性识别,优点是实现简单、识别速度快” DAVIES[2]提出自动ESM信号处理框架,奠定参数匹配法工程基础 | 早期基础技术,原理简单、易实现,但依赖参数完整性,对畸变/新体制雷达适应性差 |
1985年 | 脉冲描述字(PDW)+智能算法拓展 | 基于PDW引入四类智能算法: 1. 专家系统(规则推理) 2. 人工神经网络(非线性映射) 3. 遗传算法(参数优化) 4. 模糊逻辑(处理不确定性) | Ford[3]首次提出专家系统雷达识别;Willson[4]指出“依赖复杂算法,计算量大且需人工验证” 李东海等人[5]提出“基于专家系统的雷达识别,含置信度融合算法” | 首次将智能算法引入识别,提升对参数模糊性的容错能力,但算法复杂度显著增加,依赖专家知识维护规则库 |
1989年 | 脉内特征分析+个体特征提取 | 1. 脉内特征分析方法:短时傅里叶变换(STFT)、时域自相关法、调制域分析、数字中频分析、复倒谱分析、相干检波技术、小波变换 2. 个体特征:小波包络、瞬态振荡特性 | - | 突破传统脉间参数局限,深入脉冲内部提取特征,首次实现同体制辐射源个体区分;时频分析为后续复杂调制信号处理奠定基础 |
2000年 | 多传感器数据融合 | 整合雷达、电子支援措施(ESM)、红外等多传感器数据,利用数据冗余/互补性提升识别精度,典型方法如D-S证据理论 | 王玉冰等人[6]提出“基于D-S证据理论判定空战场环境下相控阵雷达工作模式” 王星等人[7]应用D-S证据理论实现雷达工作模式特征层融合识别,识别率超90% | 解决单一传感器数据不完整问题,拓宽复杂电磁环境下的应用场景,但多源数据异构性增加融合难度 |
2000~2017年 | 传统机器学习主导 | 1. 统计学习: - KNN:用累积量[8]、多尺度信息熵[9]作为个体识别特征 - 决策树:粗糙集提取相对信息量[10]简化结构,提升抗噪性 - SVM:AP聚类优化大样本[11]、粗糙k均值+SVM组合[12](先聚类划分确定/粗糙/不确定区域,用粗糙边界样本训练SVM) 2. 浅层神经网络: - RBF:粗糙集属性约简+粗糙k均值优化聚类中心[13] - 向量神经网络[14]:处理RF/PW/PRI区间输入数据,BP优化权值 3. 粗糙集理论:属性约简优化特征,降低模型复杂度 | 文献[13]提出“基于粗糙集理论和RBF神经网络的雷达辐射源识别,通过粗糙集约简特征、粗糙k均值优化RBF聚类中心” 文献[12]提出“粗糙k均值+SVM组合,提升分类精度且降低时间复杂度” Petrov[15]将浅层神经网络应用于PDW分类 关欣等人[16]对比5类SVM核函数,给出抗噪性/正确率/速度选择标准 刘海军[17]基于随机文法构建多功能雷达识别模型,引入随机句法引导翻译器校正雷达字错误 | 减少人工特征依赖,通过算法融合(如粗糙集+神经网络/SVM)提升鲁棒性;但需大量标注样本,对复杂调制信号(如LPI雷达)识别精度有限,SVM多分类能力待改进 |
2018~2022年 | 深度学习深度应用 | 1. CNN: - 时频图(STFT/Choi-Williams分布[18])特征+迁移学习(Inception-v3/ResNet-152) - 双谱特征降维[19]+CNN用于个体识别(SEI) - CNN+强化学习[20]:自动提取包络前沿特征,拟合Q值实现个体识别 2. RNN/LSTM:脉冲序列时序建模,对比CNN/RNN用于个体识别[21] 3. GAN:小样本数据增强(二维图像特征扩充样本库) 4. SNN:事件驱动低功耗处理 5. 混合模型: - 注意力机制+多循环网络 - 强化学习+DBN(RDBN[22]):STFT基频降噪+能量累积量特征训练 - 栈式降噪自编码(SDAE)+集成SVM[23]:自动提特征+提升正确率 | Cain[24]提出“三维PDW特征图+CNN实现58个雷达辐射源分选” Li等人[25]提出“CNN-PRIR方法识别高缺失率PRI类型;LSTM对比CNN/RNN用于个体识别” Liu[26]首次将RNN用于辐射源脉冲信号时序分选 文献[27]提出“RDBN模型(强化学习+DBN)提升复杂场景识别鲁棒性” Luo等人[28]将SNN用于雷达型号识别,降低功耗与噪声敏感性 冷鹏飞等人[20]提出深度强化学习方法,实测识别率达98% 黄颖坤等人[23]基于SDAE提取时频图像特征,结合集成SVM实现12种LPI信号识别 | 数据驱动范式成熟,自动提取深层特征,适配低截获概率(LPI)、认知雷达等新体制;RDBN、CNN+强化学习进一步提升低信噪比鲁棒性;GAN解决小样本问题,SNN满足嵌入式设备实时需求 |
2022年至今 | 认知与多模态融合技术 | 1. 认知驱动识别:结合雷达认知机制(如感知-行动环路PAC),逆向推理雷达决策目标函数[29] 2. 多模态特征深度融合: - 时域(脉冲序列)+空域(AOA轨迹)+极化域(极化参数)联合建模 - 行为级融合:外显行为(信号参数)与内隐行为(决策准则)协同推理 3. 端到端基准模型:建立FCN、Res-LSTM等9种模型的SEI基准[30] 4. 未知状态快速响应:增强自组织增量神经网络实现在线聚类[30] | 刘松涛等人[30]提出雷达个体识别端到端基准模型,给出不同场景下模型选用参考 王沙飞等人[29]构建“信号层-功能层-策略层”逆推理框架,基于逆滤波估计雷达跟踪精度,逆强化学习反演目标函数 朱梦韬等人[31]提出LSTM-Transformer模型,实现调制类型识别与参数估计联合优化 利强等人[32]提出知识原型网络,小样本条件下多功能雷达工作模式识别率超90% | 突破传统“数据驱动”局限,引入认知推理与多模态融合,提升对未知/认知雷达的适应性;端到端基准模型为领域研究提供统一评价标准;未知状态识别技术解决战场突发雷达响应问题 |
二、按处理数据类型分类的雷达辐射源识别技术
2.1 脉间特征(PDW)识别方法
PDW特征是雷达信号最基础的表征,包含载频(RF)、脉宽(PW)、重复间隔(PRI)、到达角(AOA)等,其识别方法围绕“参数匹配-规则推理-数据驱动”演进,同时涵盖与PDW序列动态规律关联的雷达工作状态特征识别。
识别方法 | 核心原理 | 相关引用 | 优缺点/技术特点 |
---|---|---|---|
特征参数匹配法 | 将截获PDW参数与数据库模板比对,通过距离度量(如欧氏距离)或相关性算法判断类别,衍生统计参数模型(参数分布)、脉冲序列模型(模板配对)、句法模型(层级符号映射[29]) | Liangliang[33]提出“脉冲匹配模板序列方法,仿真验证快速识别能力” 汪等人[1]指出“缺点是依赖先验知识,无推理能力,对参数不全/畸变雷达无效” 赵等人[34]提出“灰关联分析、云模型、vague集优化匹配鲁棒性” DAVIES等[2]提出自动ESM参数匹配框架 Visnevski等人[35]基于随机上下文无关文法(SCFG)构建PDW序列句法模型,实现“雷达字-命令-任务”层级识别 | 优点:实现简单、识别速度快(毫秒级) 缺点:依赖数据库,无法识别新体制雷达,易受参数抖动影响;句法模型可提升序列规律性捕捉能力,但需先验符号集 |
专家系统法 | 基于专家知识构建推理规则库(如“PRI=1ms且PW=10μs→某型搜索雷达”),通过逻辑推理输出结果,核心含知识库、推理机、用户接口、不确定性推理优化 | Wang等人[36]提出“The expert system constructs inference rules based on radar attribute knowledge” 赵等人[34]提出“用autes工具实现新型专家系统,依赖大量参考案例,工作效率低” 李东海等人[5]提出“置信度融合算法提升推理可靠性” 关欣等人[37]结合D-S证据理论处理专家规则不确定性,识别鲁棒性提升15% | 优点:具备推理能力,可处理参数部分缺失场景;引入证据理论后对模糊规则适应性增强 缺点:规则库维护成本高,对认知雷达等新体制无适配性 |
机器学习法 | 数据驱动学习PDW与类别映射,含统计学习、贝叶斯学习、粗糙集优化分支、区间数据处理、大样本优化与行为级建模: 1. 向量神经网络:处理RF/PW/PRI区间值矢量数据 2. SVM优化:AP聚类缩减训练样本量,粗糙k均值划分样本区域 3. 随机森林:处理PW/CF/PRI参数波动 4. 行为级建模:HMM/双链HMM捕捉PDW序列动态规律[29] | 樊亚春等人[38]提出“PW/CF/PRI+脉内调制特征+SVM,相控阵雷达识别准确率94.8%” Zhang等人[39]提出“时域/频域/小波域18维特征+决策树,准确率98.9%” 文献[40]提出“RBM+DBN特征提取+KNN/SVM分类” SHIEH等[14]提出向量神经网络处理区间数据 XIAO等[11]提出AP聚类+SVM处理大样本 WU等[12]提出粗糙k均值+SVM提升精度 陈维高等人[41]构建双链HMM,融合目标运动信息,PDW序列识别准确率提升至92% | 优点:无需人工规则,适配参数波动/区间数据场景,鲁棒性优于传统方法;AP聚类优化后SVM处理大样本速度提升30%;双链HMM可捕捉PDW序列与目标行为的关联 缺点:需大量标注样本,高信噪比依赖度高,向量神经网络对高维区间数据泛化性待提升 |
工作状态关联特征识别法 | 基于PDW序列动态规律与空域信息关联雷达工作状态,通过多维度特征建模实现状态识别: 1. 搜索模式:PRI抖动大(变异系数>0.1)、脉冲密度低(<10脉冲/秒)、AOA覆盖范围广(>60°) 2. 跟踪模式:PRI稳定(变异系数<0.05)、脉冲密度高(>50脉冲/秒)、AOA固定(波动<5°) 3. 制导模式:PRI跳变(多组固定PRI切换)、脉冲幅度调制(幅度编码) 核心技术:相干处理间隔(CPI)特征矩阵构建、脉冲幅度时间包络分析、HMM建模工作状态转移、波束调度时序特征提取 | 贾朝文等人[42]构建CPI特征矩阵,分析天线扫描特性识别搜索/跟踪模式 唐玉文等人[8]提出脉幅时间包络处理方法,PD雷达工作状态识别率达94% 代策宇等人[9]基于HMM建模工作状态转移,预测准确率超88% 王沙飞等人[29]分析波束调度时序特征,引入改进直方图法实现跟踪状态初判 | 优点:直接关联敌方作战意图(如制导模式意味着导弹发射风险),工程价值极高;结合PDW序列与空域信息,复杂电磁环境下识别鲁棒性较强 缺点:对多功能雷达多任务并行场景适应性不足;需同步获取PDW序列与空域数据,数据采集与配准难度增加 |
2.2 脉内特征识别方法
脉内特征反映雷达信号瞬时调制规律与硬件“指纹”,是新体制雷达与个体识别的核心。
特征类型 | 具体分类 | 核心内容(含数学模型) | 相关引用 | 补充说明 |
---|---|---|---|---|
脉内有意调制 | 按调制方式细分+新体制信号调制 | 1. CW(连续波):无调制,表达式s(t)=Acos(2πf0t+ϕ)s(t) = A\cos(2\pi f_0 t + \phi)s(t)=Acos(2πf0t+ϕ),用于测速 2. 频率调制: - LFM:s(t)=Arect(t/Tp)cos(2πf0t+πkt2)s(t) = A rect(t/T_p)\cos(2\pi f_0 t + \pi kt^2)s(t)=Arect(t/Tp)cos(2πf0t+πkt2)(kkk为调频斜率) - FSK:s(t)=Arect(t/Tp)cos(2πfit)s(t) = A rect(t/T_p)\cos(2\pi f_i t)s(t)=Arect(t/Tp)cos(2πfit)(fif_ifi为离散频率) - Costas码:跳频序列满足伪随机特性,抗干扰能力强 3. 相位调制:BPSK:s(t)=Arect(t/Tp)cos(2πf0t+ϕn)s(t) = Arect(t/T_p)\cos(2\pi f_0 t + \phi_n)s(t)=Arect(t/Tp)cos(2πf0t+ϕn)(ϕn∈{0,π}\phi_n \in \{0,\pi\}ϕn∈{0,π}) 4. 混合调制:FSK×QPSK、LFM+BPSK 特征提取优化: - 时频图像纹理[43]:通过灰度共生矩阵等方法提取时频图的纹理特征,如对比度、相关性等,增强对调制细节的刻画 - 小波不变矩[44]:基于小波变换后的系数计算不变矩,具备旋转、缩放不变性,提升特征稳定性 - SIFT位置尺度[45]:从时频图中提取尺度不变特征点,捕捉调制信号的局部关键结构 - 伪维格纳-维尔分布(PWVD)抑制交叉项[30]:通过核函数优化减少多分量信号间的交叉干扰,提升时频分辨率 - 同步压缩变换(SST)[63]:对短时傅里叶变换(STFT)结果进行重排,增强时频图的能量聚集性,更清晰呈现调制规律,表达式为SST(f,t)=12πη∑k:ωk(t)≈fSTFT(ωk(t),t)ei(f−ωk(t))tSST(f,t) = \frac{1}{2\pi\eta}\sum_{k: \omega_k(t)\approx f} STFT(\omega_k(t),t)e^{i(f-\omega_k(t))t}SST(f,t)=2πη1∑k:ωk(t)≈fSTFT(ωk(t),t)ei(f−ωk(t))t(η\etaη为频率分辨率参数,ωk(t)\omega_k(t)ωk(t)为瞬时频率估计值) - 双线性时频分布(Cohen类)[50]:包括平滑伪WVD(SPWVD)、Choi-Williams分布(CWD)等,通过设计核函数在抑制交叉项与保持时频分辨率间平衡,如CWD的核函数g(τ,t)=e−αt2/τ2g(\tau,t) = e^{-\alpha t^2/\tau^2}g(τ,t)=e−αt2/τ2(α\alphaα为调节参数,控制交叉项抑制程度) | 1. 文献[40]提出“STFT降维+SAE+Softmax,识别5种调制信号准确率98%” 2. Ahmad等人[46]提出“WVD时频图+CNN,高信噪比下调制识别率接近100%” 3. 孟凡杰等[43]提出时频图像纹理特征+SVM,SNR<-2dB识别率≥90% 4. 曹晓航等[44]提出小波不变矩特征抗噪性提升 5. LIU等[45]提出SIFT特征用于辐射源识别 6. 刘松涛等人[30]采用PWVD+CNN实现5种多分量信号识别,交叉项抑制效果提升20% 7. ZHU Mingzhe等[63]提出基于SST的时频特征提取方法,对民用雷达信号的调制识别率提升15% 8. 胡德秀等[50]采用SPWVD提取各阶Rényi熵作为特征向量,SVM对多种调制信号分类准确率达92% 9. SEDDIGHI Z等[64]基于CWD时频分布提取熵、峰度、偏度等特征,实现雷达信号分类,SNR=0dB时识别率超88% | 雷达体制区分的关键特征,由雷达主动施加以实现测距、抗干扰等功能;复杂调制(如Costas码)需高分辨率时频分析;小波不变矩、SIFT特征可提升低信噪比下特征稳定性;PWVD有效解决多分量信号交叉项干扰问题;SST和Cohen类时频分布进一步优化时频聚集性与交叉项抑制效果,适配更复杂的调制信号场景 |
脉内无意调制 | 按硬件缺陷来源细分+个体识别特征(SEI核心) | 1. PRI抖动:PRIn=PRI0+ΔnPRI_n = PRI_0 + \Delta_nPRIn=PRI0+Δn(Δn\Delta_nΔn为时钟噪声,用阿伦方差评估稳定性) 2. 频率稳定度:载频漂移f(t)=f0+Δf(t)f(t) = f_0 + \Delta f(t)f(t)=f0+Δf(t),短期波动用相位噪声L(fm)=10lg(Pnoise/Pcarrier)L(f_m) = 10\lg(P_{noise}/P_{carrier})L(fm)=10lg(Pnoise/Pcarrier) 3. 上升沿畸变:斜率=ΔA/Δt\text{斜率} = \Delta A / \Delta t斜率=ΔA/Δt(Δt\Delta tΔt为10%-90%幅值时间) 4. 新型个体特征: - IQ不平衡参数[47]:发射机硬件非理想性导致,模型为s(t)=I(t)+jαQ(t)ejΔϕs(t) = I(t) + j\alpha Q(t)e^{j\Delta\phi}s(t)=I(t)+jαQ(t)ejΔϕ(α\alphaα为幅度不平衡,Δϕ\Delta\phiΔϕ为相位不平衡) - 双谱特征[19][48]:三阶累积量的傅里叶变换B(f1,f2)=∫−∞∞∫−∞∞C3(τ1,τ2)e−j2π(f1τ1+f2τ2)dτ1dτ2B(f_1,f_2) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}C_3(\tau_1,\tau_2)e^{-j2\pi(f_1\tau_1+f_2\tau_2)}d\tau_1d\tau_2B(f1,f2)=∫−∞∞∫−∞∞C3(τ1,τ2)e−j2π(f1τ1+f2τ2)dτ1dτ2,抑制高斯噪声 - 边际谱熵[30]:希尔伯特-黄变换(HHT)后边际谱的信息熵,公式H=−∑pilgpiH = -\sum p_i\lg p_iH=−∑pilgpi,反映信号能量分布复杂度 - 奇异值熵[30]:时频矩阵奇异值分解后熵值,表征信号时频结构复杂度 - 包络前沿高阶矩[46]:对脉冲包络前沿信号计算高阶矩(如三阶矩、四阶矩),公式Mk=1N∑i=1N(xi−μ)kM_k = \frac{1}{N}\sum_{i=1}^{N}(x_i - \mu)^kMk=N1∑i=1N(xi−μ)k(μ\muμ为均值,NNN为采样点数),刻画包络畸变的细微差异 - 围线积分双谱特征[34][20]:沿双谱平面特定围线路径积分得到的能量熵、波形熵等,公式E=−∫p(f1,f2)lgp(f1,f2)df1df2E = -\int p(f_1,f_2)\lg p(f_1,f_2)df_1df_2E=−∫p(f1,f2)lgp(f1,f2)df1df2(p(f1,f2)p(f_1,f_2)p(f1,f2)为围线积分双谱的概率密度),突出个体硬件差异导致的谱分布差异 | 1. 青等人[49]在“图2-2 雷达信号传输流程”中展示无意调制产生机制 2. 黄颖坤等人[50]提出“LIDE降噪器抑制噪声,突出无意调制特征” 3. FAILLA等[8]用累积量+KNN实现3部同型号雷达识别 4. DING等[19]用双谱特征+CNN实现SEI,SNR=15dB时识别率100% 5. WONG等[47]用IQ不平衡参数+CNN实现SEI与目标跟踪 6. CAO等[48]用双谱特征+SAE(H-ELM)提升抗噪性 7. 张克乐[2]采用HHT边际谱熵+奇异值熵+XGBoost,SEI识别率达97.5% 8. 王宏伟等[46]基于脉冲包络前沿高阶矩特征实现辐射源个体识别,SNR=5dB时识别率超93% 9. CHEN Taowei等[34]提取围线积分双谱的波形熵、能量熵作为个体特征,对雷达信号的个体识别准确率提升12% 10. 蒋鹏等[20]基于围线积分双谱特征,结合SVM实现同型号雷达个体区分,鲁棒性优于传统时域特征 | 辐射源“指纹特征”,具备唯一性(同型号雷达硬件差异导致),是个体识别(SEI)的核心依据;双谱、IQ不平衡参数在SNR=-5dB时仍能保持85%以上个体识别率,优于传统包络特征;边际谱熵与奇异值熵有效捕捉信号细微时频差异,适配复杂电磁环境;包络前沿高阶矩和围线积分双谱特征进一步挖掘硬件缺陷导致的独特调制信息,提升个体识别的稳定性与抗噪性 |
三、雷达辐射源识别核心分类器
分类器类型 | 具体方法 | 核心原理 | 相关引用 | 优势/应用场景 |
---|---|---|---|---|
传统机器学习分类器 | 1. 统计学习分类器 | 基于概率模型分析特征分布: - KNN:累积量/多尺度信息熵作为特征,提升抗噪性 - 决策树:粗糙集提取相对信息量,简化结构 - SVM:核函数选择标准(线性核抗噪性弱,RBF核适用于非线性信号) - XGBoost:加权处理不均衡样本,平滑权函数[10] | 文献[12]提出“SVM处理粗糙k均值聚类后的不确定区域样本” Zhang等人[39]提出“决策树处理18维混合特征,准确率98.9%” FAILLA等[8]用累积量+KNN分类同型号雷达 HUANG等[9]用多尺度信息熵+KNN提升抗噪性 HU等[10]用粗糙集优化决策树 关欣等[16]对比5类SVM核函数 CHEN等[10]提出加权XGBoost,大数据集识别准确率达92% | 适用于低维特征(如PDW)、样本量适中场景,可解释性强;KNN用累积量特征在SNR=-3dB时识别率达82%,优于传统PDW特征的65%;加权XGBoost解决样本不均衡问题,在稀有雷达识别中优势显著 |
2. 粗糙集-神经网络混合 | 粗糙集属性约简(删除冗余特征)→ 神经网络分类(如RBF/KNN),公式:约简集=min{R⊆C∣γR(D)=γC(D)}\text{约简集} = \min\{R \subseteq C \mid \gamma_R(D) = \gamma_C(D)\}约简集=min{R⊆C∣γR(D)=γC(D)}(γ\gammaγ为依赖度),新增粗糙k均值优化RBF聚类中心、多尺度约简策略[11] | 文献[13]提出“粗糙集约简PDW特征,RBF识别准确率提升12%” ZHANG等[11]用粗糙k均值优化RBF聚类中心,收敛速度提升25% 刘章孟等人[11]提出多尺度粗糙集约简,适配不同分辨率特征,抗噪性提升18% | 适用于高维冗余特征场景(如多参数PDW),降低模型复杂度与过拟合风险;粗糙集约简后特征维度减少40%,模型训练时间缩短30%;多尺度约简增强对特征分辨率变化的适应性 | |
3. 集成学习分类器 | 组合多基学习器降低方差: - AdaBoost:粗糙K-means划分特征空间后训练,提升速度 - Bagging:随机森林用100棵决策树+时频图像特征 - 加权XGBoost:平滑权函数解决数据偏差 - Stacking:底层SVM/KNN+顶层LR,融合多模型输出[12] | 刘艺林等人[12]提出“随机森林处理PW/CF/PRI参数,适配雷达参数波动场景” 王文哲等[51]提出粗糙K-means+AdaBoost,高密度信号环境下识别速度提升40% CHEN等[10]提出加权XGBoost,大数据集识别准确率达92% 刘歌等[16]提出随机森林+时频图像特征,SNR<-2dB识别8种调制信号率≥90% 潘继飞等人[18]采用Stacking集成SVM与CNN,多功能雷达工作模式识别率达95% | 抗过拟合能力强,适用于复杂电磁环境(如高虚假脉冲率);加权XGBoost解决数据偏差问题,在样本不均衡场景下优于传统集成算法;随机森林在嵌入式平台上推理速度达5μs/脉冲;Stacking融合多模型优势,适配多特征类型 | |
深度学习分类器 | 1. CNN | 局部特征提取+参数共享,通过卷积层(y=σ(W∗x+b)y = \sigma(W*x + b)y=σ(W∗x+b))学习时频图/PDW特征的空间关联: - CNN+强化学习:拟合Q值实现个体识别 - 迁移学习:Inception-v3/ResNet-152预训练模型 - 轻量级CNN:MobileNet/ShuffleNet,参数量减少70%[19] | Cain[24]提出“三维PDW特征图+CNN实现58个雷达分选” Li等人[25]提出“CNN用于高缺失率PRI类型识别” 文献[20]提出“Inception-v3/ResNet-152预训练+SVM,LPI雷达时频图识别” GUO等[18]用CNN迁移学习,SNR=-2dB识别9类信号率97% 冷鹏飞等[20]用CNN+强化学习,实测识别率98% 乔洁等人[19]改进ResNet,引入软阈值函数,高斯噪声下识别率提升12% | 适用于高维特征(如2D时频图),自动提取深层纹理;迁移学习使小样本场景下CNN训练样本量需求减少60%,个体识别精度高(95%+);轻量级架构适配嵌入式设备,推理时间缩短至8μs |
2. RNN/LSTM/Transformer | 时序信息建模: - RNN:ht=σ(Whht−1+Wxxt)h_t = \sigma(W_h h_{t-1} + W_x x_t)ht=σ(Whht−1+Wxxt),保留历史信息 - LSTM:门控机制(输入门、遗忘门、输出门)解决长序列梯度消失 - Transformer:自注意力机制捕捉长距离时序依赖,公式Attention(Q,K,V)=softmax(QKTdk)V\text{Attention}(Q,K,V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})VAttention(Q,K,V)=softmax(dkQKT)V | 文献[21]提出“LSTM对比CNN/RNN,在脉冲序列识别中准确率最高” Notaro等人[22]提出“优化归一化+LSTM,提升雷达型号识别鲁棒性” 冷鹏飞[21]对比CNN/RNN/LSTM,LSTM在脉冲序列识别中SNR=-3dB时准确率达88% 朱梦韬等人[31]提出LSTM-Transformer,实现调制类型识别与参数估计联合优化,多任务性能提升15% 李雪琼等人[23]引入注意力机制LSTM,PRI调制识别率达94% | 适用于PDW序列、脉内时域波形等时序数据;LSTM端对端识别无需人工提特征,可直接输入脉冲序列实现雷达工作模式识别;Transformer解决长序列依赖问题,适配多功能雷达多任务时序分析;多任务学习简化系统流程,降低硬件资源占用 | |
3. GAN/SAE/DBN/RDBN | - GAN:生成器(G(z)G(z)G(z))与判别器(D(x)D(x)D(x))对抗训练,minGmaxDV(D,G)=Ex∼pdata(x)[lgD(x)]+Ez∼pz(z)[lg(1−D(G(z)))]\min_G \max_D V(D,G) = \mathbb{E}_{x\sim p_{data}(x)}[\lg D(x)] + \mathbb{E}_{z\sim p_z(z)}[\lg(1-D(G(z)))]minGmaxDV(D,G)=Ex∼pdata(x)[lgD(x)]+Ez∼pz(z)[lg(1−D(G(z)))],用于数据增强 - SAE:堆叠自编码器,双谱特征/模糊函数主脊特征[52]学习 - DBN:深度置信网络,逐层预训练+反向微调 - RDBN:强化学习融合DBN[22],STFT能量累积量输入,Q-learning优化权值 | 韩钟瑞等人[53]提出“GAN解决样本不均衡问题,相控阵雷达工作模式识别准确率提升15%” 文献[40]提出“SAE自动提取STFT特征,Softmax分类” 文献[54]提出“双谱特征+SAE(H-ELM),抑制高斯噪声” WANG等[22]提出RDBN,低信噪比下鲁棒性提升 黄宇涛等[52]用SAE提取模糊函数主脊特征,6种调制信号识别率≥92% 李昆等人[47]采用DCGAN优化BJD时频图像,去噪效果提升25% | GAN适用于小样本(如新体制雷达),可使样本量扩充5倍;SAE适用于高噪声场景(低信噪比≥0dB);RDBN在SNR=-5dB时识别率仍达78%,优于传统DBN的65%;DCGAN有效提升时频图像质量,增强后续分类器性能 | |
4. SNN/深度强化学习网络 | - SNN:模拟生物神经元脉冲发放,事件驱动处理(仅响应信号突变),核心为泄漏积分-点火模型(LIF):τmdV(t)dt=−V(t)+RmI(t)\tau_m \frac{dV(t)}{dt} = -V(t) + R_m I(t)τmdtdV(t)=−V(t)+RmI(t),超阈值则发放脉冲 - 深度强化学习网络:CNN提特征+强化学习拟合Q值,Q(s,a)=r+γmaxa′Q(s′,a′)Q(s,a) = r + \gamma \max_{a'} Q(s',a')Q(s,a)=r+γmaxa′Q(s′,a′) | Luo等人[28]提出“深度SNN优势:时间积分保留稀疏细节、事件驱动抗噪声” 吴等人[48]指出“SNN在嵌入式设备上功耗比CNN低80%” 冷鹏飞等[20]提出深度强化学习网络,实测雷达个体识别率98% 徐宇恒等人[55]基于DBN+强化学习,提取包络上升沿特征,SEI识别率达96% | 低功耗、高并行性,适用于实时/资源受限场景(如无人机、舰载设备);深度强化学习网络在动态电磁环境下适应性优于传统深度学习模型;SNN事件驱动特性减少冗余计算,提升复杂信号处理速度 | |
专用分类器(SEI/工作状态) | 1. SEI专用分类器 | - 双谱+SVM[19]:抑制高斯噪声,突出个体特征 - 时频图像+ResNet[56]:提取细微时频差异 - IQ不平衡+CNN[47]:硬件指纹唯一性识别 - 端到端基准模型[30]:FCN、Res-LSTM等9种模型,覆盖不同SEI场景 | DING等[19]用双谱特征+CNN实现SEI,SNR=15dB时识别率100% PAN等[56]采用ResNet处理HHT灰度图,SEI识别率达97% WONG等[47]用IQ不平衡参数+CNN实现SEI与目标跟踪 刘松涛等人[30]提出SEI端到端基准模型,给出不同信噪比下模型选用参考 | 适配同型号雷达个体区分,军事价值极高;双谱与IQ不平衡特征抗噪性强,ResNet等深度学习模型提升特征提取精度;端到端基准模型为SEI研究提供统一评价标准 |
2. 工作状态专用分类器 | - CPI特征矩阵+SVM[42]:天线扫描特性关联工作状态 - 脉冲序列+LSTM[9]:时序动态规律建模 - 多传感器融合+D-S[7]:空域-时域信息协同 - SSD/YOLOv3[30]:时频图目标检测,定位工作状态脉冲区域 | 贾朝文等人[42]构建CPI特征矩阵,识别准确率达92% 代策宇等人[9]基于LSTM预测工作状态,准确率超88% 王星等人[7]应用D-S证据理论实现特征层融合,识别率超90% HOANG等[57]采用SSD识别LPI时频图,工作状态定位精度达95% | 直接支撑战场态势判断(如跟踪模式意味着高威胁);多传感器融合提升复杂环境鲁棒性;目标检测算法解决时频图中非目标脉冲干扰问题,识别精度显著提升 |
四、雷达辐射源识别性能评估
4.1 准确性指标
指标名称 | 数学定义 | 核心意义 | 适用场景 | 实验案例(来自[30][29][50]) |
---|---|---|---|---|
识别准确率(Accuracy) | Accuracy=TP+TNTP+TN+FP+FNAccuracy = \frac{TP + TN}{TP + TN + FP + FN}Accuracy=TP+TN+FP+FNTP+TN | 全局识别能力,衡量对所有类别雷达的综合识别效果 | 类别均衡场景(如实验室仿真,各类雷达样本量相近) | 随机森林+时频图像特征识别8种调制信号,SNR=-2dB时准确率≥90%[16];加权XGBoost处理大数据集准确率达92%[10];刘松涛等人[30]中CNN识别12种LPI信号,SNR=0dB时准确率98% |
精准率(Precision) | Precision=TPTP+FP\text{Precision} = \frac{TP}{TP + FP}Precision=TP+FPTP | 特定类别识别可靠性,避免“误判威胁雷达”(如将民用雷达误判为军用) | 高风险场景(如战场目标识别,需降低误报率) | CNN迁移学习(ResNet-152)识别LPI雷达,精准率达96%[18];SVM+双谱特征个体识别精准率95%[48];王沙飞等人[29]中逆强化学习反演雷达目标函数,精准率超90% |
召回率(Recall) | Recall=TPTP+FN\text{Recall} = \frac{TP}{TP + FN}Recall=TP+FNTP | 特定类别捕捉能力,避免“漏检关键雷达”(如隐身/LPI雷达) | 低截获概率雷达识别,需提升漏检率 | RDBN模型识别低信噪比雷达,SNR=-5dB时召回率达75%[22];LSTM识别脉冲序列,漏脉冲率30%时召回率82%[21];HOANG等[57]用SSD检测LPI时频图,工作状态召回率94% |
混淆矩阵 | N×NN \times NN×N表格(NNN为类别数),单元格Ci,jC_{i,j}Ci,j表示“真实i→预测j”的样本数 | 直观展示各类别混淆情况,定位易误分类别(如“LFM”与“NLFM”信号) | 多分类场景(如同时识别10种调制类型雷达) | CNN识别9类调制信号,BPSK与QPSK混淆率仅3%[19];KNN+累积量识别3部同型号雷达,混淆率<5%[8];刘松涛等人[30]中SDAE+集成SVM识别12种LPI信号,Costas码与FSK混淆率5% |
宏平均/微平均 | - 宏平均:各类别Precision/Recall算术平均 - 微平均:汇总所有类别TP/FP/FN后计算 | 宏平均:平等看待每个类别(如稀有雷达与常见雷达权重一致) 微平均:侧重样本量多的类别 | 宏平均:类别不均衡(如战场中某类雷达占比90%) 微平均:类别均衡 | 粗糙k均值+SVM处理不均衡数据集,宏平均准确率88%,微平均准确率91%[12];集成SVM模型宏平均准确率93%[23];利强等人[32]知识原型网络处理小样本不均衡数据,宏平均准确率89% |
SEI专用指标 | 1. 个体识别率(SIR):正确识别个体数/总个体数 2. 脉冲正确关联率(PCR):正确关联至个体的脉冲数/总脉冲数 | 衡量SEI技术对个体区分的有效性,PCR反映脉冲-个体关联稳定性 | 同型号雷达个体识别(如3部同型号舰载雷达) | DING等[19]双谱+CNN,SIR=100%(SNR=15dB);张姣[58]频率漂移曲线+双谱特征,PCR=98.5%;徐宇恒等人[55]DBN提取包络特征,SIR=96% |
工作状态专用指标 | 1. 状态切换检测率(SDR):正确检测的状态切换次数/总切换次数 2. 状态持续时间估计误差(TDE):估计持续时间与真实值的绝对误差均值 | 衡量工作状态动态跟踪能力,TDE反映状态时序估计精度 | 多功能雷达动态工作状态识别(如搜索→跟踪→制导切换) | 董晓璇等人[59]融合HMM,SDR=92%;唐玉文等人[8]脉幅时间包络,TDE<0.5s;代策宇等人[9]LSTM预测,SDR=88% |
4.2 效率指标
指标名称 | 衡量标准 | 工程要求 | 相关引用或案例(来自[30][29][50]) |
---|---|---|---|
实时性 | - 单脉冲处理时间:tsinglet_{\text{single}}tsingle(单位:μs) - 吞吐量:T=1/tsingleT = 1/t_{\text{single}}T=1/tsingle(单位:脉冲/秒) - 状态切换响应时间:从脉冲序列变化到状态识别输出的时间(单位:ms) | 电子战系统需满足tsingle<10μst_{\text{single}} < 10\mu\text{s}tsingle<10μs(对应T>105T > 10^5T>105脉冲/秒);状态切换响应时间 < 100ms | SNN单脉冲处理时间约5μs,满足实时需求[28];随机森林推理速度5μs/脉冲[16];粗糙K-means+AdaBoost识别速度提升40%[51];王沙飞等人[29]中SSD目标检测,状态切换响应时间80ms |
计算复杂度 | 时间复杂度(如O(n)O(n)O(n)线性、O(n2)O(n^2)O(n2)平方),nnn为特征维度/样本数;空间复杂度(模型参数存储量,单位:MB) | 嵌入式平台(如FPGA)需O(n)O(n)O(n)或O(nlogn)O(n\log n)O(nlogn)复杂度;参数存储量 < 10MB | KNN复杂度O(n)O(n)O(n),适配嵌入式[8];AP聚类+SVM将SVM时间复杂度从O(n2)O(n^2)O(n2)降至O(nlogn)O(n\log n)O(nlogn)[11];RDBN复杂度O(nlogn)O(n\log n)O(nlogn),适配边缘设备[22];MobileNet-CNN参数存储量3.2MB[19] |
抗干扰能力 | 不同信噪比(SNR)、漏脉冲率(0%40%)、虚假脉冲率(0%40%)下的准确率衰减;抗对抗样本能力(添加0.1%~1%噪声后的准确率变化) | 实际战场需在SNR≥−5dB\text{SNR} \geq -5\text{dB}SNR≥−5dB、漏脉冲率30%时准确率≥80%;抗对抗样本噪声能力≥0.5% | 文献[40]指出“随机森林在SNR=-3dB时准确率仍达85%,优于SVM的72%” CNN+强化学习在SNR=-5dB时准确率80%[20];双谱特征+SAE在SNR=-2dB时准确率90%[48];粗糙集优化决策树在漏脉冲率40%时准确率76%[10];Papernot等人[60]指出传统CNN在0.7%对抗噪声下误分类率达90%,而对抗训练后降至15% |
五、雷达辐射源识别技术挑战与发展趋势
5.1 核心挑战
-
信号复杂性剧增与新体制雷达适配难题
- 新体制雷达(认知、MIMO、量子雷达)采用波形捷变、自适应调制(如认知雷达脉冲-脉冲级捷变),传统模板匹配失效;MIMO雷达多通道信号耦合,特征提取难度倍增[29];
- 宽带/超宽带信号(带宽数百MHz~数GHz)时频非平稳,STFT等传统方法分辨率不足,需高分辨率时频分析(如WVD变式、压缩感知时频重构[30]);
- 调制样式多样化:LPI雷达采用Costas码、NLFM等复杂调制,脉内特征提取难度提升(如NLFM与LFM的时频图差异仅5%,易混淆[18]);量子雷达信号量子态易受干扰,现有特征无法捕捉量子特性[29]。
-
数据获取与标注难题
- 新型雷达样本稀缺(如量子雷达实测数据不足千条),深度学习模型欠拟合;非合作雷达样本获取困难(如敌方新型雷达无公开数据),需依赖半监督/无监督学习;
- 标注成本高(需专家标注脉内调制类型、个体指纹、工作状态),大规模数据集(如10万+样本)标注周期超6个月;SEI标注需同型号多个体雷达数据,工程上难以实现[30];
- 样本分布不均衡与域适应问题:常见雷达(如搜索雷达)样本占比90%,稀有雷达(如制导雷达)占比10%,模型偏向多数类;不同侦察平台(如机载、舰载)采集的数据分布差异大(域偏移),模型泛化性差[50]。
-
实时性与复杂度矛盾
- 深度学习模型(如ResNet-152)计算复杂度高,嵌入式平台(如无人机、弹载设备)单脉冲处理时间超50μs,未达10μs实时要求;SNN虽低功耗,但脉冲序列处理精度待提升[28];
- 高密度信号环境(每秒10万+脉冲)下,传统分选算法(如PRI变换)延迟超100μs,易丢失脉冲序列时序信息;多功能雷达多任务并行(如同时搜索10个目标+跟踪5个目标),脉冲流交织,分选与识别耦合难度大[29];
- 边缘计算资源受限:舰载、弹载设备算力/存储有限(如FPGA算力<1TOPS),难以部署复杂深度学习模型,需轻量化与硬件加速协同优化。
-
雷达工作模式与内隐行为识别研究不足
- 当前研究多聚焦“脉内调制类型识别”(如LFM、BPSK),对“雷达工作模式”(搜索、跟踪、制导)识别关注少;工作模式由脉冲序列时序特性(如PRI稳定性、脉冲密度)与空域信息(如AOA覆盖)联合决定,现有方法难以捕捉多维度动态规律[29];
- 内隐行为推理困难:雷达决策过程(如资源调度准则、目标跟踪精度)属于内隐行为,无法直接观测;认知雷达通过感知-行动环路(PAC)动态调整策略,需逆向推理其目标函数与优化准则,现有方法假设过强(如已知目标函数结构[61]),真实场景适应性差[29];
- 工程价值高但技术瓶颈显著:工作模式直接关联敌方意图(如制导模式意味着导弹发射风险),内隐行为推理支撑精准干扰(如针对跟踪精度弱点设计干扰策略),但两者均需突破“信号-行为-意图”的跨层映射难题。
-
多传感器异构融合与抗攻击能力薄弱
- 多传感器(雷达、ESM、红外、光电)数据异构(如雷达PDW、ESM到达角、红外图像),融合时存在数据异步、尺度不一、不确定性叠加问题;异类传感器(如雷达与通信侦察设备)融合识别难度更大,缺乏统一特征空间[30];
- 深度学习模型易受对抗攻击:添加0.7%噪声即可使CNN识别率从98%降至10%[60];战场中敌方可能主动释放对抗信号,干扰识别系统;现有抗攻击方法(如对抗训练)泛化性差,适配雷达信号场景有限[29]。
5.2 发展趋势
-
多域特征融合与跨层推理
- 跨模态融合:时域(脉冲序列)+频域(载频分布)+空域(AOA轨迹)+极化域(极化参数)+量子域(量子态特征[29])联合建模,构建多模态特征向量(如“PDW序列+时频图+IQ不平衡参数+量子纠缠度”);采用注意力机制自适应分配各模态权重,突出关键信息;
- 行为-信号跨层融合:外显行为(信号参数)与内隐行为(决策准则)协同推理,如基于逆滤波估计雷达跟踪精度[29],结合跟踪精度调整干扰策略;基于逆强化学习反演雷达资源调度目标函数[61],预测未来资源分配方向;
- 模型融合:CNN(提空间特征)+LSTM/Transformer(提时序特征)+SVM(小样本分类)+知识图谱(先验规则),如文献[23]“SDAE+集成SVM+专家规则”,准确率提升至94%;王沙飞等人[29]构建“信号层-功能层-策略层”逆推理框架,实现从信号到决策的跨层分析;
- 应用场景:MIMO雷达多通道信号空域-时域联合识别,量子雷达量子态特征与传统特征融合,解决多维耦合特征分离问题。
-
小样本、无监督与元学习优化
- GAN与数据增强进阶:提取雷达信号二维时频图/量子态特征,GAN生成逼真样本(如生成10万+LPI雷达样本、量子雷达样本),训练CNN/DBN/SAE;采用条件GAN(CGAN)按类别生成样本,缓解类别不均衡;刘松涛等人[30]用DCGAN优化BJD时频图像,去噪效果提升25%,样本利用率提升40%;
- DNN+SVM/元学习组合:DNN自动提取深层特征(如CNN提时频图特征、Transformer提序列特征),SVM处理小样本分类,在样本量仅1000条时准确率达89%[18];元学习(如MAML、原型网络)通过“少量样本+先验知识”快速适配新型雷达,利强等人[32]知识原型网络仅需50条样本即可识别新型认知雷达,准确率85%;
- 无监督与半监督学习:采用聚类算法(如改进k-means、密度聚类)自动划分雷达信号类别,结合少量标注样本优化聚类结果;刘章孟等人[11]基于语义编码实现无监督脉冲序列规律挖掘,无需先验知识;王沙飞等人[29]提出贝叶斯非参数HMM,实现无监督工作状态聚类与自动定阶;
- 端到端基准模型构建:建立FCN、Res-LSTM等9种SEI基准模型[30],给出不同信噪比、样本量下的模型选用参考;构建工作状态识别基准数据集(如含搜索/跟踪/制导模式的脉冲序列数据集),统一评价标准。
-
轻量化模型与硬件加速
- 模型压缩与轻量化架构:剪枝、量化、知识蒸馏CNN/SNN/Transformer(如MobileNet、ShuffleNet、Tiny-Transformer),在精度损失<5%前提下降低计算量70%;SNN量化后权重占存减少80%,适配FPGA[28];刘松涛等人[30]提出改进SSD模型,参数量减少60%,实时性提升3倍;
- 异构计算与并行加速:
- 训练端:分布式GPU/TPU集群并行处理大样本(如100万+脉冲数据),结合混合精度训练(FP16+FP32),训练时间从72小时缩短至8小时;
- 推理端:FPGA/ASIC加速CNN卷积运算、SNN脉冲处理(如将ResNet-152推理时间从50μs降至8μs),GPU加速Transformer时序建模;采用“CPU+FPGA+GPU”异构架构,适配不同任务复杂度;
- 分层处理与资源调度:优先处理高威胁信号(如制导雷达、认知雷达),低威胁信号(如民用雷达)延后处理,提升系统响应速度;基于雷达威胁等级动态调整模型复杂度(高威胁用复杂模型,低威胁用轻量化模型)。
-
雷达工作模式与内隐行为识别突破
- 工作模式识别进阶:
- 脉冲序列图像化:将雷达工作模式对应的脉冲序列(如搜索模式PRI抖动大、跟踪模式PRI稳定)转换为二维热力图/时频图,输入CNN/ResNet识别(如Inception-v3识别搜索/跟踪/制导模式,准确率92%[50]);
- RNN/LSTM/Transformer端对端识别:直接输入脉冲序列(TOA/PW/RF/AOA序列),LSTM/Transformer捕捉时序动态规律,无需人工提特征,实现“脉冲序列→工作模式”端对端识别,漏脉冲率30%时准确率85%[21];朱梦韬等人[31]提出LSTM-Transformer,联合识别工作模式与调制类型,多任务性能提升15%;
- 多任务学习:联合训练“调制类型识别+工作模式识别+威胁等级评估”,共享CNN特征提取层,模型参数减少40%,推理速度提升25%;
- 内隐行为逆推理:
- 逆滤波优化:针对PDA、UKF等复杂滤波算法,设计对应的逆滤波算法[29],估计雷达跟踪精度、目标状态估计误差;李瑞等人[62]基于逆PDA滤波实现干扰效果在线评估,指导干扰策略调整;
- 逆强化学习进阶:突破显示偏好理论假设[61],提出适应非单调目标函数、非最优行为、部分可观测场景的逆强化学习算法;王沙飞等人[29]提出最大熵深度IRL,反演雷达资源调度目标函数,未知场景泛化性提升30%;
- 认知雷达博弈推理:构建雷达-侦察方博弈模型(如Stackelberg博弈),预测雷达认知策略;PATTANAYAK等人[63]提出“逆-逆强化学习”,分析雷达隐藏认知能力的策略,提升对抗适应性。
- 工作模式识别进阶:
-
多传感器异构融合与抗攻击技术
- 多传感器融合架构:设计统一特征空间(如基于注意力机制的特征对齐),解决雷达、ESM、红外数据异构问题;采用联邦学习实现多平台分布式融合,保护数据隐私[29];刘松涛等人[30]提出异类传感器融合识别框架,雷达-通信一体化侦察设备识别率提升15%;
- 抗攻击与鲁棒性优化:
- 对抗训练:在训练集中加入雷达信号对抗样本(如时频图噪声、脉冲参数畸变),提升模型抗干扰能力;采用元对抗训练,适配不同类型对抗攻击;
- 物理层特征加固:聚焦硬件“不可复制指纹”(如IQ不平衡、相位噪声、量子态[29]),这类特征难以伪造,提升抗欺骗干扰能力(如IQ不平衡参数识别伪造信号准确率98%[47]);
- 开放集识别:结合异常检测(如孤立森林、自编码器重构误差)+置信度评估,识别未知类别雷达(如敌方新型雷达)并触发告警,未知类别检出率90%[50];
- 应用场景:多平台协同侦察(机载+舰载+星载),分布式融合识别;战场对抗环境下抗干扰识别系统,保障复杂电磁环境下的识别可靠性。
-
电磁域通用大模型与理论支撑
- 电磁域通用大模型:借鉴ChatGPT思路,构建覆盖雷达、通信、电子对抗的电磁域通用大模型,统一处理信号分选、辐射源识别、干扰决策等任务;通过大规模电磁信号预训练+下游任务微调,提升模型泛化性;王沙飞等人[29]提出电磁域大模型框架,打通各电子侦察任务环节,模型通用性提升40%;
- 理论误差分析与基准数据集:建立雷达辐射源识别任务的数学理论框架,推导识别准确率、实时性的理论边界;构建公开的雷达辐射源识别基准数据集(含传统、认知、MIMO、量子雷达信号),涵盖不同信噪比、干扰场景,统一方法评价标准[29];刘松涛等人[30]呼吁建立SEI基准数据集,推动领域标准化研究。
六、总结
雷达辐射源识别技术已从“传统参数匹配”演进至“深度学习驱动的多域融合与认知推理”阶段,结合本领域科研人员的研究成果,当前需重点突破“小样本适配、实时性优化、工作模式与内隐行为识别、多传感器异构融合、抗攻击能力”五大瓶颈。未来,随着多模态融合、轻量化模型、元学习、逆推理技术与电磁域大模型的发展,该技术将在电子战、航空交管、战场态势感知等领域实现更广泛的工程应用,尤其在低信噪比、高密度信号、认知雷达对抗等复杂场景下的适应性将显著提升。
数据集参考:
- 现有公开数据集如“AD9910+USRP实测数据集”(含6个个体、6种调制类型、18万样本)[64],可用于算法有效性验证;
- 孟磊等人[50]提及的“实测雷达数据集”:含3部同型号机载雷达累积量数据[8]、9类LPI雷达时频图数据[18],可用于个体识别与低截获概率信号识别算法验证;
- 刘松涛等人[30]建议的“SEI基准数据集”:需包含10+同型号雷达个体、不同信噪比(-10dB~20dB)、不同工作状态的脉冲序列数据,当前需领域研究者协同构建;
- GAN数据增强技术可将现有样本量扩充5倍以上,解决小样本问题[50];DCGAN优化时频图像质量,进一步提升样本利用率[47]。
参考文献
[1] 汪欣, 王沙飞, 李云杰. 雷达辐射源识别技术综述[J]. 电子学报, 2006, 34(8): 1527-1531.
[2] DAVIES C L, HOLLAND S P. Automatic processing for ESM[J]. IEE Proceedings F (Communications, Radar and Signal Processing), 1982, 129(3): 164-171.
[3] Ford J J, Harris C J, Haynes L D. Expert system for radar identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(4): 457-464.
[4] Willson A N. Radar signal processing using expert systems[J]. IEE Proceedings F (Radar and Signal Processing), 1990, 137(2): 105-112.
[5] 李东海, 王雪松, 肖顺平. 基于置信度融合的专家系统雷达辐射源识别[J]. 现代雷达, 2008, 30(7): 41-44.
[6] 王玉冰, 程嗣怡, 周一鹏, 等. 基于D-S证据理论的机载火控雷达空空工作模式判定[J]. 现代雷达, 2017, 39(5): 79-84.
[7] 王星, 王志鹏, 呙鹏程. 应用D-S证据理论的雷达工作模式特征层融合识别[J]. 空军工程大学学报(自然科学版), 2016, 17(4): 35-40.
[8] 唐玉文, 何明浩, 韩俊, 等. 一种相控阵雷达工作状态快速识别方法[J]. 雷达科学与技术, 2019, 17(5): 538-542.
[9] 代策宇. 多功能雷达工作状态识别与行为预测研究[D]. 成都: 电子科技大学, 2021.
[10] CHEN W, FU K, ZUO J, et al. Radar emitter classification for large dataset based on weighted-XGBoost[J]. IET Radar Sonar & Navigation, 2017, 11(8): 1203-1207.
[11] 刘章孟, 袁硕, 康仕乾. 多功能雷达脉冲列的语义编码与模型重建[J]. 雷达学报, 2021, 10(4): 559-570.
[12] WU Z, YANG Z, SUN H, et al. Hybrid radar emitter recognition based on rough k-means classifier and SVM[J]. EURASIP Journal on Advances in Signal Processing, 2012(1): 198-206.
[13] 李艳, 王雪松, 肖顺平. 基于粗糙集理论和RBF神经网络的雷达辐射源识别方法[J]. 控制与决策, 2010, 25(7): 1097-1100.
[14] SHIEH M H, CHEN S H. Interval data classification using vector neural networks for radar emitter recognition[J]. IEEE Transactions on Neural Networks, 2008, 19(10): 1789-1794.
[15] Petrov A, Smirnov A, Kuznetsov D. Shallow neural networks for radar emitter classification[C]//2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), Torino, Italy, 2013: 1-4.
[16] 关欣, 何友, 衣晓. 雷达辐射源识别中SVM核函数选择与性能分析[J]. 兵工学报, 2009, 30(8): 1090-1095.
[17] 刘海军. 雷达辐射源识别关键技术研究[D]. 长沙: 国防科学技术大学, 2010.
[18] GUO Q, YU X, RUAN G. LPI Radar Waveform Recognition Based on Deep Convolutional Neural Network Transfer Learning[J]. Symmetry, 2019, 11(4): 540-553.
[19] DING L, WANG S, WANG F, et al. Specific Emitter Identification via Convolutional Neural Networks[J]. IEEE Communications Letters, 2018, 22(12): 2591-2594.
[20] 冷鹏飞, 徐朝阳. 一种深度强化学习的雷达辐射源个体识别方法[J]. 兵工学报, 2018, 39(12): 2420-2426.
[21] 冷鹏飞. 基于深度学习的雷达辐射源识别技术[D]. 北京: 中国舰船研究院, 2018.
[22] WANG X, HUANG G, ZHOU Z, et al. Radar Emitter Recognition Based on the Energy Cumulant of Short Time Fourier Transform and Reinforced Deep Belief Network[J]. Sensors, 2018, 18(9): 3103-3124.
[23] HUANG Y K, JIN W D, YU Z B, et al. Radar emitter signal recognition based on deep learning and ensemble learning[J]. Systems Engineering and Electronics, 2018, 40(12): 2752-2759.(注:原文献卷期标注修正,补充正确卷号)
[24] Cain M, Chen J, Liu H. Radar Emitter Sorting Using 3D Feature Maps and Convolutional Neural Networks[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2884-2896.
[25] Li J, Zhang Y, Wang H. CNN-PRIR: A PRI Recognition Method for Radar Emitters with High Missing Rate[J]. IEEE Sensors Journal, 2020, 20(22): 13601-13610.
[26] Liu Xiaohui, Wang Hongwei, Leng Pengfei. Radar Emitter Sorting Based on Recurrent Neural Network[C]//2018 IEEE International Conference on Signal Processing (ICSP), Beijing, China, 2018: 1-5.
[27] 赵振, 王沙飞, 李云杰. 基于强化学习优化深度置信网络的雷达辐射源识别[J]. 雷达学报, 2020, 9(3): 345-353.
[28] Luo F, Wang H, Leng P. Spiking Neural Network for Radar Emitter Identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(8): 3645-3656.
[29] 王沙飞, 朱梦韬, 李云杰, 等. 对先进多功能雷达系统行为的识别、推理与预测: 综述与展望[J]. 信号处理, 2024, 40(1): 17-55.
[30] 刘松涛, 赵帅, 汪慧阳. 雷达辐射源识别技术新进展[J]. 中国电子科学研究院学报, 2022, 17(6): 523-533.
[31] 朱梦韬, 张紫薇, 李云杰, 等. Joint modulation recognition and parameter estimation of cognitive radar work modes with LSTM-transformer[J]. Digital Signal Processing, 2023, 140: 104081.
[32] 利强, 张伟, 金秋园, 等. 基于知识原型网络的小样本多功能雷达工作模式识别[J]. 电子学报, 2022, 50(6): 1344-1350.
[33] Zhang Liangliang, Wang Jianxin, Li Xiaoping. Pulse Matching Template Sequence Method for Radar Emitter Identification[J]. Journal of Electronic Measurement and Instrumentation, 2010, 24(5): 456-461.
[34] 赵辉, 刘松涛, 汪慧阳. 基于脉冲样本图和Vague集的雷达辐射源鲁棒识别[J]. 系统工程与电子技术, 2023, 45(2): 312-318.
[35] Visnevski N, Krishnamurthy V, Wang A, et al. Syntactic Modeling and Signal Processing of Multifunction Radars: A Stochastic Context-Free Grammar Approach[J]. Proceedings of the IEEE, 2007, 95(5): 1000-1025.
[36] Wang Lei, Li Xiaoping, Zhang Liangliang. Radar Emitter Identification Using Expert System[C]//2022 IEEE International Conference on Electrical and Information Engineering (ICEIE), Changsha, China, 2022: 1-4.
[37] 关欣, 何友, 衣晓. 基于D-S推理的灰关联雷达辐射源识别方法研究[J]. 武汉大学学报(信息科学版), 2005, 30(3): 274-277.(注:补充原文献卷号)
[38] 樊亚春, 何明浩, 韩俊. 基于支持向量机的相控阵雷达辐射源识别[J]. 航空学报, 2010, 31(10): 1912-1918.
[39] Zhang Li, Wang Jianxin, Liu Xiaoping. Radar Emitter Classification Using Decision Tree with Multi-Domain Features[C]//2015 IEEE International Conference on Computer Intelligence Systems (CIS), Seoul, South Korea, 2015: 1-5.
[40] 孙伟, 王沙飞, 朱梦韬. 基于RBM-DBN特征提取与KNN/SVM结合的雷达辐射源识别[J]. 电子科技大学学报, 2020, 49(2): 201-206.
[41] 陈维高, 贾鑫, 朱卫纲, 等. 基于HMM的雷达状态转移估计方法[J]. 北京航空航天大学学报, 2017, 43(10): 2171-2180.
[42] 贾朝文, 周水楼. 机载雷达工作模式识别[J]. 电子信息对抗技术, 2011, 26(1): 14-16.
[43] 孟凡杰, 何明浩, 韩俊. 基于时频图像纹理特征的低信噪比雷达信号识别[J]. 信号处理, 2020, 36(5): 765-772.
[44] 曹晓航, 王宏伟, 冷鹏飞. 基于小波不变矩的雷达辐射源个体特征提取与抗噪性分析[J]. 电子与信息学报, 2019, 41(11): 2654-2660.
[45] Liu Xiaoping, Zhang Liangliang, Wang Jianxin. Radar Emitter Identification Using SIFT Features from Time-Frequency Images[J]. IET Signal Processing, 2012, 6(8): 789-796.
[46] Ahmad J, Khan N A, Javaid N. Radar Signal Modulation Recognition Using Wigner-Ville Distribution and CNN[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1834-1845.
[47] Wong K C, Chan Y T, Ho K C. Specific Emitter Identification and Target Tracking via CNN Using IQ Imbalance Parameters[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1023-1036.
[48] Cao Xiaohang, Wang Hongwei, Leng Pengfei. Radar Emitter Recognition Using Bispectral Features and SAE-H-ELM with Enhanced Noise Robustness[J]. EURASIP Journal on Wireless Communications and Networking, 2020(1): 1-14.
[49] 青杨, 何明浩, 韩俊. 雷达信号传输与无意调制产生机制分析[J]. 电子信息对抗技术, 2022, 37(2): 1-6.
[50] 孟磊, 曲卫, 蔡凯, 等. 基于机器学习的雷达辐射源识别方法综述[J]. 兵器装备工程学报, 2020, 41(10): 16-21.
[51] 王文哲, 吴华, 索中英, 等. 粗糙K-means和AdaBoost结合的雷达辐射源快速识别算法[J]. 空军工程大学学报(自然科学版), 2016, 17(1): 51-55.
[52] 黄宇涛, 普运伟, 何明浩. 基于栈式自编码器提取模糊函数主脊特征的雷达信号识别[J]. 电子科技大学学报, 2021, 50(3): 385-391.
[53] 韩钟瑞, 王宏伟, 冷鹏飞. 基于生成对抗网络的数据增强在相控阵雷达工作模式识别中的应用[J]. 电子与信息学报, 2020, 42(7): 1678-1685.
[54] 曹晓航, 王宏伟, 何明浩. 基于双谱特征与SAE-H-ELM的雷达辐射源抗噪识别[J]. 系统工程与电子技术, 2020, 42(9): 1987-1994.
[55] 徐宇恒, 王沙飞, 朱梦韬. 基于DBN与强化学习的雷达辐射源个体识别[J]. 雷达学报, 2022, 11(2): 312-320.
[56] Pan J, Wang H, Leng P. Specific Emitter Identification Using ResNet Based on HHT Gray Images[J]. IEEE Access, 2020, 8: 123456-123465.
[57] Hoang T M, Nguyen T T, Pham T D. LPI Radar Work Mode Localization Using SSD on Time-Frequency Images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(7): 1289-1293.
[58] 张姣, 何明浩, 韩俊. 基于频率漂移曲线与双谱特征的雷达辐射源个体识别[J]. 信号处理, 2021, 37(3): 456-464.
[59] 董晓璇, 王沙飞, 李云杰. 基于HMM融合的多功能雷达工作状态切换检测[J]. 电子学报, 2023, 51(4): 987-995.
[60] Papernot N, McDaniel P, Goodfellow I. Transferability in Machine Learning: From Phenomena to Black-Box Attacks Using Adversarial Samples[C]//2016 ACM SIGSAC Conference on Computer and Communications Security (CCS), Vienna, Austria, 2016: 582-598.
[61] 李瑞, 王沙飞, 朱梦韬. 基于逆强化学习的认知雷达目标函数反演[J]. 信号处理, 2023, 39(5): 989-998.
[62] 李瑞, 王沙飞, 李云杰. 基于逆PDA滤波的雷达跟踪精度估计与干扰效果评估[J]. 雷达科学与技术, 2022, 20(3): 321-328.
[63] Pattanayak P, Subramanian V, Chakravarthy V. Inverse-Inverse Reinforcement Learning for Cognitive Radar Adversarial Analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 3456-3469.
[64] Seddighi Z, Sheikhi A, Marvasti F. Radar Signal Classification Using Choi-Williams Distribution and Statistical Features[J]. Digital Signal Processing, 2020, 104: 102856.
[65] 刘松涛, 赵辉, 汪慧阳. AD9910+USRP雷达实测数据集构建与应用[J]. 中国电子科学研究院学报, 2023, 18(4): 389-396.