1
序号 | 英文标题 | 作者及机构 | 中文翻译 | 出处 | 链接 |
---|---|---|---|---|---|
1 | Medical Image Classification Using Lightweight Deep Spiking Neural Network | Sandipan Bhowmick1; Ashim Saha1; Suman Deb1; Anurag De2 & …Ankit Srivastava1 机构:1Computer Science and Engineering, National Institute of Technology Agartala, Jirania, Tripura, 799046, India; 2School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, 522237, India | 基于轻量级深度脉冲神经网络的医学图像分类 | Iranian Journal of Science and Technology, Transactions of Electrical Engineering 2025 Vol.49 No.2 P589-600 | 链接 |
2 | A Sophisticated Iterative Weighted Feature Selection (IWFS) Based Spiking Imperialist Competitive Recurrent Neural Network (SICRNN) Classification Model for Credit Card Fraud Detection | S. Sobana1; V. Diana Earshia2; R. Suganthi3 & …K. Ayyappa Swamy4 机构:1Department of Electronics and Communication Engineering, Karpagam College of Engineering, Coimbatore, Tamil Nadu, 641032, India; 2Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu, 600062, India; 3Department of Electronics and Communication Engineering, Panimalar Engineering College, Poonamallee, Chennai, Tamil Nadu, 600123, India; 4Department of Electronics and Communications Engineering, Aditya University, Surampalem, Andhra Pradesh, 533437, India | 基于迭代加权特征选择与脉冲帝国主义竞争递归神经网络的信用卡欺诈检测分类模型 | Iranian Journal of Science and Technology, Transactions of Electrical Engineering 2025 Vol.49 No.2 P615-638 | 链接 |
3 | Reconfigurable optoelectronic neuromorphic properties of MoS₂-based memristors decorated with Pt nanoparticles for low power spiking neural network applications | Chrysi Panagopoulou; Panagiotis Bousoulas*; Georgia Iliani Papouli; Maria Kainourgiaki; Charalampos Tsioustas; Maria Karnachoriti; Athanassios G Kontos; Dimitris Tsoukalas | 铂纳米颗粒修饰的二硫化钼基忆阻器的可重构光电子神经形态特性及其在低功耗脉冲神经网络中的应用 | Neuromorphic Computing and Engineering 2025 Vol.5 No.2 P024010 | 链接 |
4 | Enhancing Cold Joint Shear Strength Prediction in Concrete Structures: Novel Approach with Ensemble Spiking Neural Networks | Barkhordari, Mohammad Sadegh1 机构:1Scientific Researcher, Dept. of Civil and Environmental Engineering, Amirkabir Univ. of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran. | 基于集成脉冲神经网络的混凝土结构冷缝抗剪强度预测新方法 | Journal of Structural Design & Construction Practice 2025 Vol.30 No.1 P1-16 | 链接 |
5 | Unsupervised post-training learning in spiking neural networks | Reyhaneh Naderi1; Arash Rezaei1; Mahmood Amiri2; Herbert Peremans3 机构:1Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; 2Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran. Ma_amiri_bme@yahoo.com; 3Department of Engineering Management, University of Antwerp, Antwerp, Belgium. Herbert.peremans@uantwerpen.be. | 脉冲神经网络的无监督后训练学习 | Scientific reports 2025 Vol.15 No.1 P17647 | 链接 |
6 | An Efficient Neural Cell Architecture for Spiking Neural Networks | Kasem Khalil1,2; Ashok Kumar3; Magdy Bayoumi4 机构:1Electrical and Computer Engineering Department, University of Mississippi, Oxford, MS, USA; 2Electrical Engineering Department, Assiut University, Asyut, Egypt; 3The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA, USA; 4Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA, USA | 一种高效的脉冲神经网络神经元细胞架构 | IEEE Open Journal of the Computer Society 2025 Vol.6 P599-612 | 链接 |
7 | Random Heterogeneous Spiking Neural Network for Adversarial Defense | Jihang Wang1,2,3,4,5; Dongcheng Zhao1,3,4,6,5; Chengcheng Du1,7,3,4; Xiang He1,2,3,4; Qian Zhang1,2,3,4,6; Yi Zeng1,2,7,8,3,4,6,9 机构:1Brain-inspired Cognitive AI Lab, Institute of Automation, Chinese Academy of Sciences, Beijing, China; 2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; 3Beijing Key Laboratory of AI Safety and Superalignment, Beijing, China; 4Beijing Institute of AI Safety and Governance, Beijing, China; 5These authors contributed equally; 6Center for Long-term AI, Beijing, China; 7School of Future Technology, University of Chinese Academy of Sciences, Beijing, China; 8State Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Shanghai, China; 9Lead contact | 用于对抗防御的随机异构脉冲神经网络 | iScience 2025 P112660 | 链接 |
8 | ADMM-Based Training for Spiking Neural Networks | Giovanni Perin; Cesare Bidini; Riccardo Mazzieri; Michele Rossi | 基于交替方向乘子法的脉冲神经网络训练 | 2025 | 链接 |
9 | Event-based Neural Spike Detection Using Spiking Neural Networks for Neuromorphic iBMI Systems | Chanwook Hwang; Biyan Zhou; Ye Ke; Vivek Mohan; Jong Hwan Ko; Arindam Basu | 基于事件的脉冲神经网络在神经形态脑机接口系统中的神经脉冲检测 | 2025 | 链接 |
10 | TS-SNN: Temporal Shift Module for Spiking Neural Networks | Kairong Yu; Tianqing Zhang; Qi Xu; Gang Pan; Hongwei Wang | TS-SNN:脉冲神经网络的时间移位模块 | 2025 | 链接 |
11 | Threshold Modulation for Online Test-Time Adaptation of Spiking Neural Networks | Kejie Zhao; Wenjia Hua; Aiersi Tuerhong; Luziwei Leng; Yuxin Ma; Qinghai Guo | 用于脉冲神经网络在线测试时自适应的阈值调制 | 2025 | 链接 |
12 | Causal pieces: analysing and improving spiking neural networks piece by piece | Dominik Dold; Philipp Christian Petersen | 因果片段:逐片分析与改进脉冲神经网络 | 2025 | 链接 |
13 | Akkumula: Evidence accumulation driver models with Spiking Neural Networks | Alberto Morando | Akkumula:基于脉冲神经网络的证据积累驱动模型 | 2025 | 链接 |
14 | Head-Tail-Aware KL Divergence in Knowledge Distillation for Spiking Neural Networks | Tianqing Zhang; Zixin Zhu; Kairong Yu; Hongwei Wang | 脉冲神经网络知识蒸馏中的头尾感知KL散度 | 2025 | 链接 |
15 | Input-Specific and Universal Adversarial Attack Generation for Spiking Neural Networks in the Spiking Domain | Spyridon Raptis; Haralampos-G. Stratigopoulos | 脉冲域中脉冲神经网络的输入特定与通用对抗攻击生成 | 2025 | 链接 |
16 | Adaptation and learning of spatio-temporal thresholds in spiking neural networks | Jiahui Fu1; Shuiping Gou1; Peizhao Wang2; Licheng Jiao1; Zhang Guo1; Jisheng Li2; Rong Liu2 机构:1Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an, 710071, Shannxi, China; 2School of Physics and Information Technology, Shaanxi Normal University, Xi’an, 710119, Shannxi, China | 脉冲神经网络时空阈值的自适应与学习 | Neurocomputing 2025 Vol.644 P130423 | 链接 |
17 | SU-YOLO: Spiking neural network for efficient underwater object detection | Chenyang Li1,2,3; Wenxuan Liu4,2,3; Guoqiang Gong1; Xiaobo Ding1; Xian Zhong2,5 机构:1College of Computer and Information Technology, China Three Gorges University, Yichang, 443002, China; 2Hubei Key Laboratory of Transportation Internet of Things, School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, 430070, China; 3Contributed equally to this work.; 4State Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, 100091, China; 5State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan, 430063, China | SU-YOLO:用于高效水下目标检测的脉冲神经网络 | Neurocomputing 2025 Vol.644 P130310 | 链接 |
18 | Energy-Efficient Brain-Inspired Self-Attention-Spiking Neural Network Framework for Mix-Type Wafer Defect Recognition | Peng,Dandan1; Wang,Yitian2; Zhou,Xinhe3; Liu,Jiale3; Liu,Chenyu4; Han,Te5 机构:1The Hong Kong Polytechnic University, Department of Electrical and Electronic Engineering, Kowloon, 999077, Hong Kong; 2University of California San Diego, School of Computer Science, CA, United States; 3University of Electronic Science and Technology of China, Glasgow College, Chengdu, 611731, China; 4Northwestern Polytechnical University, School of Mechanical Engineering, Xi’an, China; 5Beijing Institute of Technology, School of Management, Beijing, 100081, China; | 用于混合类型晶圆缺陷识别的节能脑启发自注意力脉冲神经网络框架 | IEEE Sensors Journal 2025 | 链接 |
19 | SSTFormer: Bridging Spiking Neural Network and Memory Support Transformer for Frame-Event based Recognition | Xiao Wang1; Yao Rong1; Zongzhen Wu1; Lin Zhu2; Bo Jiang1; Jin Tang1; Yonghong Tian3,4 机构:1School of Computer Science and Technology, Anhui University, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China; 2Beijing Institute Of Technology, Beijing, China; 3National Engineering Laboratory for Video Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing, China; 4Peng Cheng Laboratory, Shenzhen, China | SSTFormer:连接脉冲神经网络与记忆支持Transformer的帧事件识别框架 | IEEE Transactions on Cognitive and Developmental Systems 2025 P1-15 | 链接 |
20 | Enhanced Multiple Sound Event Detection and Classification Using Physical Signal Properties in Recurrent Spiking Neural Networks | Zahra Roozbehi1; Ajit Narayanan1; Mahsa Mohaghegh1,2,3; Samaneh-Alsadat Saeedinia4 机构:1School of Electrical and Computer Engineering, Auckland University of Technology, Auckland, New Zealand; 2Faculty of Design and Creative Technologies, Auckland University of Technology, Auckland, New Zealand; 3North Carolina Agricultural and Technical State University, Greensboro, NC, USA; 4Department of Electrical and Computer Engineering, Iran University of Science and Technology, Tehran, Iran | 基于物理信号特性的递归脉冲神经网络增强型多声音事件检测与分类 | IEEE Access 2025 Vol.13 P81312-81325 | 链接 |
21 | SOM-Associated-SNN: Enhancing audio classification with spiking neural networks through single-modality clustering and associative learning | Xin Liu1; Lingfei Mo1; Mengting Tang1 机构:1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China | SOM-Associated-SNN:通过单模态聚类和关联学习增强脉冲神经网络的音频分类 | Neurocomputing 2025 Vol.640 P130416 | 链接 |
22 | Biologically inspired information integration pooling module of spiking neural networks for rolling bearing fault diagnosis | Mingfei Shi1,2; Feng Jiang1,3; Yongbo Li4; Lin Du1,5,6 机构:1MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an, 710072, China; 2Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an, 710072, China; 3School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an, 710072, China; 4School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, China; 5School of Mathematics and Statics, Northwestern Polytechnical University, Xi’an, 710072, China; 6MOE Key Laboratory for Complexity Science in Aerospace, Northwestern Polytechnical University, Xi’an, 710072, China | 基于生物启发信息集成池化模块的脉冲神经网络在滚动轴承故障诊断中的应用 | Expert Systems with Applications 2025 Vol.286 P128032 | 链接 |
23 | A graph attention network integrated with gated spiking neural P systems for session-based recommendation | Xinzhu Bai1; Hong Peng1; Yanping Huang1; Jun Wang2; Qian Yang1; Antonio Ramírez-De-Arellano3 机构:1School of Computer and Software Engineering, Xihua University, Chengdu, 610039, China; 2School of Electrical Engineering and Electronic Information, Xihua University, Chengdu, 610039, China; 3Department of Computer Science and Artificial Intelligence, Research Group of Natural Computing, University of Seville, Sevilla, 41012, Spain | 融合门控脉冲神经P系统的图注意力网络用于会话推荐 | Expert Systems with Applications 2025 Vol.286 P128029 | 链接 |
24 | A Deep Bayesian Convolutional Spiking Neural Network-based CAD system with Uncertainty Quantification for Medical Images Classification | Mohaddeseh Chegini; Ali Mahloojifar | 基于深度贝叶斯卷积脉冲神经网络的医学图像分类CAD系统及其不确定性量化 | 2025 | 链接 |
25 | Revisiting Reset Mechanisms in Spiking Neural Networks for Sequential Modeling: Specialized Discretization for Binary Activated RNN | Enqi Zhang | 脉冲神经网络时序建模中的重置机制再探讨:二元激活RNN的专用离散化 | 2025 | 链接 |
26 | CogniSNN: A First Exploration to Random Graph Architecture based Spiking Neural Networks with Enhanced Expandability and Neuroplasticity | Yongsheng Huang; Peibo Duan; Zhipeng Liu; Kai Sun; Changsheng Zhang; Bin Zhang; Mingkun Xu | CogniSNN:基于随机图架构的脉冲神经网络首次探索及其增强的可扩展性与神经可塑性 | 2025 | 链接 |
27 | Izhikevich-Inspired Temporal Dynamics for Enhancing Privacy, Efficiency, and Transferability in Spiking Neural Networks | Ayana Moshruba; Hamed Poursiami; Maryam Parsa | 基于Izhikevich模型的时间动态特性增强脉冲神经网络的隐私性、效率和可迁移性 | 2025 | 链接 |
28 | SMVSNN: An Intelligent Framework for Anticancer Drug-Drug Interaction Prediction Utilizing Spiking Multi-view Siamese Neural Networks | Guoliang Tan1; Yijun Liu1; Wujian Ye1; Zexiao Liang2; Wenjie Lin3; Fahai Ding4 机构:1School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China; 2School of Computers, Huizhou University, Huizhou 516001, China; 3Peng Cheng Laboratory, Shenzhen 518055, China; 4Guangdong Maxon Communication Co.,Ltd, Heyuan 517000, China. | SMVSNN:基于脉冲多视图孪生神经网络的抗癌药物相互作用预测智能框架 | Journal of chemical information and modeling 2025 | 链接 |
29 | An area and power efficient VLSI architecture for epileptic seizure detection using Transpose Form Retimed Delayed LMS filter and spiking neural networks | Venugopal Ponnuraj1; Sasikala Thangavelu1; Bagirathan Kaliyamurthi2 机构:1MNM Jain Engineering College, Anna University, Chennai, Tamil Nadu, 600097, India; 2Jeppiaar Engineering college, Chennai, Tamil Nadu, 600119, India | 基于转置形式重定时延迟LMS滤波器和脉冲神经网络的癫痫发作检测面积与功耗高效VLSI架构 | Integration 2025 Vol.103 P102433 | 链接 |
30 | Application and Prospects of Spiking Neural Networks in Intelligent Perception | Zhongchuan Shi; Fu Rao; Peisong Feng 机构:Think Tank Office, Chinese Society of Astronautics, Beijing, China | 脉冲神经网络在智能感知中的应用与展望 | 2025 IEEE International Conference on Electronics, Energy Systems and Power Engineering (EESPE) Shenyang, China 2025 | 链接 |
2
序号 | 英文标题 | 作者及机构 | 中文翻译 | 出处 | 链接 |
---|---|---|---|---|---|
1 | Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning | 作者:Yinqian Sun1;Feifei Zhao1;Zhuoya Zhao1;Yi Zeng1,2,3,4 机构:1中国科学院自动化研究所脑启发认知智能实验室,北京 100190;2北京长期人工智能中心,北京 100190;3中国科学院大学,北京 100049;4中国科学院脑认知与脑启发智能技术重点实验室,上海 200031 | 基于多隔室神经元和群体编码的脉冲神经网络用于深度分布强化学习 | Neural Networks 2025 Vol.182 P106898 | 链接 |
2 | A VOx-based optoelectronic memristor for application in visual perception | 作者:Pratibha Pal;Dhananjay D Kumbhar;Hanrui Li;Serhii Tytov;Abdul Momin Syed;Nazek El-Atab* 机构:沙特阿拉伯阿卜杜拉国王科技大学(KAUST)计算机、电气、数学科学与工程学部电气与计算机工程项目智能先进存储器件与应用(SAMA)实验室,23955 图瓦尔 | 用于视觉感知的基于VOx的光电子忆阻器 | Journal of Physics D: Applied Physics 2025 Vol.58 No.4 P045108 | 链接 |
3 | Multi-attribute dynamic attenuation learning improved spiking actor network | 作者:Rong Xiao1,2;Zhiyuan Hu1,2;Jie Zhang1,2;Chenwei Tang1,2;Jiancheng Lv1,2 机构:1教育部机器学习与工业智能工程研究中心,成都 610065;2四川大学计算机学院,成都 610065 | 多属性动态衰减学习改进的脉冲演员网络 | Neurocomputing 2025 Vol.614 P128819 | 链接 |
4 | Pulse transfer learning: Multi-area river ammonia nitrogen prediction with limited data | 作者:Zichen Song1;Boying Nie1;Sitan Huang2 机构:1兰州大学信息科学与工程学院,甘肃兰州 730000;2兰州大学新闻与传播学院,甘肃兰州 730000 | 脉冲迁移学习:有限数据下的多区域河流氨氮预测 | Expert Systems with Applications 2025 Vol.263 P125730 | 链接 |
5 | Advanced forecast models for the climate and energy crisis: The case of the California independent system operator | 作者:Merve Bulut1;Hüseyin Aydilek2;Mustafa Yasin Erten2;Evrencan Özcan1 机构:1土耳其克尔克拉雷利大学工程与自然科学学院工业工程系,克尔克拉雷利;2土耳其克尔克拉雷利大学工程与自然科学学院电气与电子工程系,克尔克拉雷利 | 气候与能源危机的先进预测模型:以加利福尼亚独立系统运营商为例(注:该文献涉及脉冲神经网络相关技术应用) | Engineering Applications of Artificial Intelligence 2025 Vol.139 Part B P109602 | 链接 |
6 | Asymmetric Spatiotemporal Online Learning for Deep Spiking Neural Networks | 作者:Xiao, Rong1;Ning, Limiao1;Wang, Yixuan1;Du, Huajun2,3;Wang, Sen2,3;Yan, Rui4 机构:1四川大学计算机学院,成都 610065;2北京航天自动控制研究所,北京 100007;3航天智能控制技术国家重点实验室,北京 100048;4浙江工业大学计算机学院,杭州 310023 | 深度脉冲神经网络的非对称时空在线学习 | IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2024 Vol.16 No.5 P1640-1647 | 链接 |
7 | Memristor-based spiking neural networks:cooperative development of neural network architecture/algorithms and memristors | 作者:Huihui Peng,Lin Gan,Xin Guo 机构:材料科学与工程学院 | 基于忆阻器的脉冲神经网络:神经网络架构/算法与忆阻器的协同发展 | Chip 2024 第2期 P62-78 | 链接 |
8 | Expansion and Architecture of Spiking Neural Networks | 作者:Yanxi Wei1;Fenggang Yao1;Yuru Kang1 机构:未明确标注具体机构(原文未提供详细机构信息) | 脉冲神经网络的扩展与架构 | Procedia Computer Science 2024 Vol.247 P703-709 | 链接 |
9 | An FPGA Accelerator Design of Spiking Neural Network for Energy-Efficient Object Detection | 作者:Tianci Li1;Xiaofeng Huang1;Yansong Li1;Nemin Qiu2;Haibing Yin1;Chuang Zhu2;Yuan Li3 机构:1杭州电子科技大学通信工程学院,杭州;2北京邮电大学人工智能学院,北京;3北京大学电子工程与计算机科学学院,北京 | 用于高能效目标检测的脉冲神经网络FPGA加速器设计 | IEEE Transactions on Consumer Electronics 2024 P1 | 链接 |
10 | Rethinking residual connection in training large-scale spiking neural networks | 作者:Yudong Li1;Yunlin Lei1;Xu Yang1 机构:1北京理工大学AETAS实验室,北京 100081 | 大规模脉冲神经网络训练中残差连接的再思考 | Neurocomputing 2024 P128950 | 链接 |
11 | Deep Learning-Based Event Counting for Apnea-Hypopnea Index Estimation using Recursive Spiking Neural Networks | 作者:Lorin Werthen-Brabants1;Yolanda Castillo-Escario2;Willemijn Groenendaal3;Raimon Jané2;Tom Dhaene1;Dirk Deschrijver1 机构:1比利时根特大学imec研究所,根特;2西班牙加泰罗尼亚理工大学(UPC)、加泰罗尼亚生物工程研究所(IBEC)、巴塞罗那科学与技术研究所(BIST)及生物工程、生物材料与纳米医学生物医学研究网络中心(CIBER-BBN);3荷兰瓦赫宁根imec荷兰基金会OnePlanet研究中心 | 基于递归脉冲神经网络的深度学习事件计数用于呼吸暂停低通气指数估计 | IEEE Transactions on Biomedical Engineering 2024 P1-10 | 链接 |
12 | FireFly-S: Exploiting Dual-Side Sparsity for Spiking Neural Networks Acceleration With Reconfigurable Spatial Architecture | 作者:Tenglong Li1,2;Jindong Li1,2;Guobin Shen2,3;Dongcheng Zhao2;Qian Zhang1,2;Yi Zeng2,4,5 机构:1中国科学院大学人工智能学院,北京;2中国科学院自动化研究所脑启发认知智能实验室,北京;3中国科学院大学未来技术学院,北京;4中国科学院大学,北京;5中国科学院脑认知与脑启发智能技术重点实验室,上海 | FireFly-S:利用可重构空间架构挖掘双边稀疏性加速脉冲神经网络 | IEEE Transactions on Circuits and Systems I: Regular Papers 2024 P1-14 | 链接 |
13 | Multi-compartment neuron and population encoding powered spiking neural network for deep distributional reinforcement learning | 作者:Yinqian Sun1;Feifei Zhao1;Zhuoya Zhao1;Yi Zeng1,2,3,4 机构:1中国科学院自动化研究所脑启发认知智能实验室,北京 100190;2中国科学院自动化研究所脑启发认知智能实验室,北京 100190、北京长期人工智能中心,北京 100190、中国科学院大学,北京 100049、中国科学院脑认知与脑启发智能技术重点实验室,上海 200031(通讯作者邮箱:yi.zeng@ia.ac.cn) | 基于多隔室神经元和群体编码的脉冲神经网络用于深度分布强化学习 | Neural Networks 2024 Vol.182 P106898 | 链接 |
14 | 基于策略融合及Spiking DRL的移动机器人路径规划方法 | 作者:安阳1,2,3,王秀青1,2,3,赵明华1 机构:1河北师范大学计算机与网络空间安全学院;2河北省网络与信息安全重点实验室;3河北省供应链大数据分析与数据安全工程研究中心 | (原文为中文,无英文翻译) | 计算机科学 2024 第51卷 第A2期 P69-79 | 链接 |
15 | 基于多子网络预训练的脉冲神经网络分类模型 | 作者:卓明松,莫凌飞 机构:东南大学仪器科学与工程学院 | (原文为中文,无英文翻译) | 计算机科学 2024 第51卷 第A2期 P43-48 | 链接 |
16 | Identification of movie encoding neurons enables movie recognition AI | 作者:Masaki Hiramoto 1;Hollis T Cline 1 机构:1美国加利福尼亚州拉霍亚斯克里普斯研究所多里斯神经科学中心神经科学系,CA 92037 | 电影编码神经元的识别助力电影识别人工智能(注:该文献涉及脉冲序列相关神经机制) | Proceedings of the National Academy of Sciences of the United States of America 2024 Vol.121 No.48 e2412260121 | 链接 |
17 | Cellular-resolution optogenetics reveals attenuation-by-suppression in visual cortical neurons | 作者:Paul K. LaFosse;Zhishang Zhou;Jonathan F. O’Rawe;Nina G. Friedman;Victoria M. Scott;Yanting Deng;Mark H. Histed 1 机构:1美国马里兰州贝塞斯达国立精神卫生研究院(NIH)院内项目,MD 20892(所有作者均隶属于该机构) | 细胞分辨率光遗传学揭示视觉皮层神经元的抑制性衰减(注:该文献涉及神经元脉冲输出机制) | Proceedings of the National Academy of Sciences 2024 Vol.121 No.45 e2318837121 | 链接 |
18 | Identification of Pipeline Intrusion Signals Based on ICEEMDAN-FE-AIT and F-ELM in the uwDAS System | 作者:Changyan Ran1;Peijun Xiao2;Zhihui Luo1;Xiaoan Chen3 机构:1三峡大学理学院湖北省弱磁检测工程技术研究中心,宜昌;2三峡大学计算机与信息学院,宜昌;3中国石化集团新星石油有限责任公司测井技术研究院,西安 | uwDAS系统中基于ICEEMDAN-FE-AIT和F-ELM的管道入侵信号识别(注:该文献关键词涉及脉冲神经网络) | IEEE Sensors Journal 2024 Vol.24 No.22 P36874-36881 | 链接 |
19 | On-chip electro-optical spiking VO2/Si device with an inhibitory leaky integrate-and-fire response | 作者:Juan-Francisco Morcillo;Pablo Sanchis;Jorge Parra* 机构:西班牙瓦伦西亚理工大学纳米光子学技术中心,Camino de Vera s/n,46022 瓦伦西亚(通讯作者邮箱:jorpargo@ntc.upv.es) | 具有抑制性泄漏积分点火响应的片上电光脉冲VO2/Si器件(注:该文献涉及脉冲神经网络能量效率相关器件) | Optical Materials Express 2024 Vol.14 No.11 P2681-2693 | 链接 |
20 | 基于注意力的联想忆阻脉冲神经网络及其无监督图像分类应用 | 作者:邓泽坤1,王春华1,蔺海荣2,邓全利1,Yichuang SUN3 机构:1湖南大学信息科学与工程学院;2中南大学电子信息学院;3英国赫特福德大学工程与计算机科学学院 | (原文为中文,无英文翻译) | 中国科学(信息科学) 2024 第54卷 第11期 P2554-2571 | 链接 |
21 | Artificial synaptic simulating pain-perceptual nociceptor and brain-inspired computing based on Au/Bi3.2La0.8Ti3O12/ITO memristor | 作者:Hao Chen,Zhihao Shen,Wen-Tao Guo,Yan-Ping Jiang,Wenhua Li,Dan Zhang,Zhenhua Tang,Qi-Jun Sun,Xin-Gui Tang 机构:物理与光电工程学院 | 基于Au/Bi3.2La0.8Ti3O12/ITO忆阻器的模拟痛觉感受器的人工突触及脑启发计算(注:该文献涉及脉冲时序依赖可塑性) | Journal of Materiomics 2024 第6期 P1308-1316 | 链接 |
22 | Deep learning-based spike sorting: a survey | 作者:Luca M Meyer1;Majid Zamani2;János Rokai3;Andreas Demosthenous4* 机构:1德国威斯巴登(无所属机构);2英国南安普顿大学电子与计算机科学学院,南安普顿;3匈牙利布达佩斯自然科学研究中心认知神经科学与心理学研究所;4英国伦敦大学学院电子与电气工程系,伦敦 | 基于深度学习的脉冲分选:综述(注:该文献涉及脉冲神经网络相关信号处理) | Journal of Neural Engineering 2024 Vol.21 No.6 P061003 | 链接 |
23 | SIBoLS: Robust and Energy-Efficient Learning for Spike-Based Machine Intelligence in Information Bottleneck Framework | 作者:Yang, Shuangming1;Wang, Haowen1;Chen, Badong2 机构:1天津大学电子信息工程学院,天津 300072;2西安交通大学人工智能与机器人研究所,西安 710049 | SIBoLS:信息瓶颈框架下基于脉冲的机器智能的稳健且高能效学习 | IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS 2024 Vol.16 No.5 P1664-1676 | 链接 |
24 | Stress-induced artificial neuron spiking in diffusive memristors | 作者:D. P. Pattnaik1;Y. Sharma2;S. Savel’ev1;P. Borisov1;A. Akhter1;A. Balanov1;P. Ferreira2 机构:1英国拉夫堡大学物理系,拉夫堡 LE11 3TU;2英国拉夫堡大学机械、电气与制造工程沃尔夫森学院,拉夫堡 LE11 3TU | 扩散忆阻器中应力诱导的人工神经元脉冲 | Communications Engineering 2024 Vol.3 No.1 P163 | 链接 |
25 | Robot Locomotion Through Tunable Spiking and Bursting Rhythms Using Efficient Bio-Mimetic Neural Networks on Loihi and Arduino Platforms | 作者:Vivekanand, Vijay Shankaran 机构:美国匹兹堡大学(University of Pittsburgh) | 基于Loihi和Arduino平台的高效仿生神经网络通过可调脉冲和爆发节律实现机器人运动 | Robot Locomotion Through Tunable Spiking and Bursting Rhythms Using Efficient Bio-Mimetic Neural Networks on Loihi and Arduino Platforms M.S. 2023(硕士学位论文) | 链接 |
26 | An Exploration of Spiking Neural Networks and Their Use on Reinforcement Learning Tasks | 作者:Rafe, Andrew William 机构:澳大利亚悉尼科技大学(University of Technology Sydney, Australia) | 脉冲神经网络及其在强化学习任务中的应用探索 | An Exploration of Spiking Neural Networks and Their Use on Reinforcement Learning Tasks M.Sc.(Res) 2021(研究型硕士学位论文) | 链接 |
27 | Modelling and Analysis of Temporal Gene Expression Data Using Spiking Neural Networks | 作者:Durgesh Nandini, Elisa Capecci, Lucien Koefoed, Ibai Laña, Gautam Kishore Shahi, Nikola Kasabov 机构:未明确标注具体机构(原文未提供详细机构信息) | 基于脉冲神经网络的时序基因表达数据建模与分析 | Lecture Notes in Computer Science 2018 Vol.11301 No.1 P571-581 | 链接 |
28 | NVM Weight Variation Impact on Analog Spiking Neural Network Chip | 作者:Akiyo Nomura, Megumi Ito, Atsuya Okazaki, Masatoshi Ishii, Sangbum Kim, Junka Okazawa et al. 机构:未明确标注具体机构(原文未提供详细机构信息) | 非易失性存储器权重变化对模拟脉冲神经网络芯片的影响 | Lecture Notes in Computer Science 2018 Vol.11307 No.1 P676-685 | 链接 |
29 | Neuromorphic Implementations of Polychronous Spiking Neural Networks | 作者:Wang, Runchun 机构:澳大利亚西悉尼大学(University of Western Sydney, Australia) | 多时序脉冲神经网络的神经形态实现 | Neuromorphic Implementations of Polychronous Spiking Neural Networks Ph.D. 2013(博士学位论文) | 链接 |
30 | Learning from Delayed Reward und Punishment in a Spiking Neural Network Model of Basal Ganglia with Opposing D1/D2 Plasticity | 作者:Jenia Jitsev (21) Nobi Abraham (21) Abigail Morrison (22) Marc Tittgemeyer (21) 机构:未明确标注具体机构(原文仅标注序号21、22,未提供详细机构信息) | 基于具有相反D1/D2可塑性的基底神经节脉冲神经网络模型从延迟奖惩中学习 | Lecture Notes in Computer Science 2012 Vol.7552 No.1 P467-473 | 链接 |