序号 | 英文标题 | 作者及机构 | 中文翻译 | 出处 | 链接 |
---|---|---|---|---|---|
1 | Cost-effective and high-speed implementation of brain-like spiking neural network with encoding architectures on FPGA | Zhen Cao,Ziyi Zhang,Qi Sun,Biao Hou,Licheng Jiao,Yintang Yang(School of Artificial Intelligence and School of Microelectronics) | 基于编码架构的类脑脉冲神经网络在FPGA上的高性价比高速实现 | Chain 2024 第2期 P167-176 | 链接 |
2 | Realize ultralow-energy-consumption photo-synaptic device based on a single(Al,Ga)N nanowire for neuromorphic computing | (College of Electronic and Optical Engineering & College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing210023,China;Key Lab of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences(CAS),Suzhou 215123,China;Key Lab of Nanodevices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences(CAS),Suzhou 215123,China;School of Nano-Tech and Nano-Bionics,University of Science and Technology of China,Hefei 230026,China;Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application,School of Physical Science and Technology,Suzhou University of Science and Technology,Suzhou 215009,China;College of Electronic and Optical Engineering & College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing210023,China) | 基于单根(Al,Ga)N纳米线的超低功耗光突触器件用于神经形态计算 | 纳米研究(英文版) 2024 第17卷 第3期 P1933-1941 | 链接 |
3 | Synaptic a-Si∶H/a-Ga2O3 phototransistor inspired by the phototaxis behavior of organisms with all-optical and all-electrical stimulation modes | (School of Electronics and Information Engineering,Korea Aerospace University,Goyang,10540,Republic of Korea;Nano Materials Division,Korea Institute of Materials Science,Changwon 51508,Republic of Korea;Department of Materials Science and Engineering,Pusan National University,Busan 46241,Republic of Korea;Nano Materials Division,Korea Institute of Materials Science,Changwon 51508,Republic of Korea) | 受生物趋光行为启发的具有全光和全电刺激模式的a-Si∶H/a-Ga2O3突触光电晶体管 | 纳米研究(英文版) 2024 第17卷 第8期 P7631-7642 | 链接 |
4 | Biological Vision-Inspired Neural Network for Dynamic and Static Segmentation of Particle Holograms | 汤铭杰,徐捷,陈振熙,熊锐,钟丽云,吕晓旭,田劲东(人工智能与数字经济广东省实验室(深圳);深圳大学物理与光电工程学院;华南师范大学纳米光子功能材料与器件广东省重点实验室) | 生物视觉启发的颗粒全息图动静分割神经网络 | Acta Optica Sinica 2025 第45卷 第1期 | 链接 |
5 | From light sensing to adaptive learning:hafnium diselenide reconfigurable memcapacitive devices in neuromorphic computing | (Electrical and Computer Engineering Program,Computer Electrical Mathematical Science and Engineering Division,King Abdullah University of Science and Technology(KAUST),Thuwal,Saudi Arabia;Electrical Engineering Department,College of Engineering,Princess Nourah Bint Abdulrahman University(PNU),Riyadh,Saudi Arabia;Electrical and Computer Engineering Program,Computer Electrical Mathematical Science and Engineering Division,King Abdullah University of Science and Technology(KAUST),Thuwal,Saudi Arabia) | 从光感知到自适应学习:神经形态计算中的二硒化铪可重构忆容器件 | 光(科学与应用)(英文版) 2025 第14卷 第1期 P215-226 | 链接 |
6 | FDSRN: Fractal Deep Spiking Neural Network for Breast Cancer Detection Using Mammogram Images | Urabinahatti, Sachina; Jayadevappa, Devappab; Jogigowda, Mahendra Shivallic(aDepartment of Electronics & Instrumentation Engineering JSSATE, Bangalore (Affiliated to Visvesvaraya Technological University, Karnataka) Department of AI & ML, BMS Institute of Technology & Management, Karnataka, Bengaluru, 560 119, India; bDepartment of Electronics & Communication Engineering, H N National College of Engineering, Bangalore (Affiliated to Visvesvaraya Technological University, Karnataka), Karnataka, Jayanagar, Bangalore, 560070, India; cDepartment of Medical Electronics Engineering RIT, Bangalore MSR Nagar, MSRIT Post, Karnataka, Bengaluru, 560 060, India) | FDSRN:基于分形深度脉冲神经网络的乳腺X光图像乳腺癌检测 | International Journal of Intelligent Engineering and Systems 2025 Vol.18 No.1 P939-955 | 链接 |
7 | New method for assessing suicide ideation based on an attention mechanism and spiking neural network | Francis, Corrinea; Al-Hababi, Abdulrazak Yahya Saleha(aDepartment of Cognitive Sciences, Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, Samarahan, Malaysia) | 基于注意力机制和脉冲神经网络的自杀意念评估新方法 | IAES International Journal of Artificial Intelligence 2025 Vol.14 No.1 P350-357 | 链接 |
8 | Optimization and extension of the PWM-based encoding-decoding algorithm for Spiking Neural Networks; [Optimización y extensión del algoritmo de codificación-decodificación basado en PWM para Redes Neuronales de Impulsos] | Lucas, Sergioa; Portillo, Evaa; Cabanes, Itziara(aDepartamento de Ingeniería de Sistemas y Automática, Escuela de Ingeniería de Bilbao, Universidad del País Vasco (UPV/EHU), C/ Plaza Ingeniero Torres Quevedo n°1, Bilbao, 48013, Spain) | 脉冲神经网络基于PWM的编解码算法优化与扩展;[基于PWM的脉冲神经网络编解码算法优化与扩展(西班牙文)] | RIAI - Revista Iberoamericana de Automatica e Informatica Industrial 2025 Vol.22 No.1 P21-32 | 链接 |
9 | TR-SNN: a lightweight spiking neural network based on tensor ring decomposition | Shifeng Mao1; Baoxin Yang1; Hongze Sun1; Wuque Cai1; Daqing Guo1(1The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, China-Cuba Belt and Road Joint Laboratory on Neurotechnology and Brain-Apparatus Communication, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China) | TR-SNN:基于张量环分解的轻量级脉冲神经网络 | Brain-Apparatus Communication: A Journal of Bacomics 2025 Vol.4 No.1 P2472166 | 链接 |
10 | Accelerating spiking neural networks with parallelizable leaky integrate-and-fire neurons | Sidi Yaya Arnaud Yarga**; Sean U N Wood | 基于可并行泄漏积分点火神经元的脉冲神经网络加速方法 | Neuromorphic Computing and Engineering 2025 Vol.5 No.1 P014012 | 链接 |
11 | Defect Detection of Train Wheelset Tread Based on Improved Spiking Neural Network | He, Jing1; Huang, Congcong2; Zhang, Changfan2; Jia, Lin2(1College of Electrical and Information Engineering, Hunan University of Technology, Zhuzhou; 412000, China; 2College of Railway Transportation, Hunan University of Technology, Zhuzhou; 412000, China) | 基于改进脉冲神经网络的火车轮对踏面缺陷检测 | Tiedao Xuebao/Journal of the China Railway Society 2025 Vol.47 No.1 P91-100 | 链接 |
12 | Event-Driven Tactile Sensing With Dense Spiking Graph Neural Networks | Fangming Guo1; Fangwen Yu2; Mingyan Li1; Chao Chen1; Jinjin Yan3; Yan Li4; Fuqiang Gu1; Xianlei Long1; Songtao Guo1(1College of Computer Science, Chongqing University, Chongqing, China 2Department of Precision Instrument, Tsinghua University, Beijing, China 3Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, China 4School of Computing, Macquarie University, Sydney, NSW, Australia) | 基于密集脉冲图神经网络的事件驱动触觉感知 | IEEE Transactions on Instrumentation and Measurement 2025 Vol.74 P1-13 | 链接 |
13 | Spiking neural network classification of X-ray chest images | Marco Gatti1; Jessica Amianto Barbato1; Claudio Zandron1(1Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, 20126 Milano, Italy) | 基于脉冲神经网络的胸部X光图像分类 | Knowledge-Based Systems 2025 Vol.314 P113194 | 链接 |
14 | Spike-VAD: Efficient and Robust Spiking Neural Network for Voice Activity Detection | Shi, Kexin1; Hou, Mengshu1; Luo, Xiaoling2; Zhang, Dehao1; Liu, Hanwen1; Wang, Jingya1(1University of Electronic Science and Technology of China, Department of Computer Science and Engineering, China; 2Sichuan University of Science and Engineering, Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, China) | Spike-VAD:用于语音活动检测的高效鲁棒脉冲神经网络 | IEEE Transactions on Cognitive and Developmental Systems 2025 | 链接 |
15 | Speech emotion recognition based on spiking neural network and convolutional neural network | Chengyan Du1; Fu Liu1; Bing Kang1; Tao Hou1(1College of Communication Engineering, Jilin University, Changchun, 130022, China) | 基于脉冲神经网络和卷积神经网络的语音情感识别 | Engineering Applications of Artificial Intelligence 2025 Vol.147 P110314 | 链接 |
16 | Predicting EEG seizures using graded spiking neural networks | Yazin Al Musafir; Mostefa Mesbah* | 基于分级脉冲神经网络的脑电癫痫发作预测 | Journal of Neural Engineering 2025 Vol.22 No.2 P026007 | 链接 |
17 | An Exact Spike Timing Learning Rule Based on Direct Feedback Alignment | 宁黎苗,王自铭,林志诚,彭舰,唐华锦(四川大学计算机学院) | 一种基于直接反馈对齐的精确脉冲时间学习规则 | 计算机科学 2025 第3期 P260-267 | 链接 |
18 | Exploring the Versatility of Spiking Neural Networks: Applications Across Diverse Scenarios | Cavaleri, Matteoa; Zandron, Claudioa(aDipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Viale Sarca 336/14, Milano, 20126, Italy) | 探索脉冲神经网络的多功能性:多场景应用 | International Journal of Neural Systems 2025 Vol.35 No.3 P2550007 | 链接 |
19 | Designing Spiking Neural Network-Based Reinforcement Learning for 3D Robotic Arm Applications | Park, Yuntaea; Lee, Jiwoona; Sim, Donggyua; Cho, Younghob; Park, Cheolsooa(aDepartment of Computer Engineering, Kwangwoon University, Seoul, 01897, South Korea; bDepartment of Information and Communication Engineering, Soonchunhyang University, Asan, 31538, South Korea) | 面向3D机械臂应用的基于脉冲神经网络的强化学习设计 | Electronics (Switzerland) 2025 Vol.14 No.3 | 链接 |
20 | Ebola optimization based spiking neural network for automatic hate speech recognition | A. Meenakshi1 & J. Anitha Ruth1(1Department of Computer Science and Applications, SRM Institute of Science and Technology, Vadapalani Campus, Chennai, India) | 基于埃博拉优化的脉冲神经网络用于自动仇恨言论识别 | International Journal of Information Technology 2025 Vol.17 No.3 P1631-1639 | 链接 |
21 | Spike-BRGNet: Efficient and Accurate Event-Based Semantic Segmentation With Boundary Region-Guided Spiking Neural Networks | Xianlei Long1; Xiaxin Zhu1; Fangming Guo1; Chao Chen1; Xiangwei Zhu2; Fuqiang Gu1; Songyu Yuan3; Chunlong Zhang4(1College of Computer Science, Chongqing University, Chongqing, China 2School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen, China 3Research Center for Data Hub and Security, Zhejiang Laboratory, Hangzhou, China 4Research Center for Intelligent Robotics, Zhejiang Laboratory, Hangzhou, China) | Spike-BRGNet:基于边界区域引导脉冲神经网络的高效精确事件驱动语义分割 | IEEE Transactions on Circuits and Systems for Video Technology 2025 Vol.35 No.3 P2712-2724 | 链接 |
22 | Self-Supervised High-Order Information Bottleneck Learning of Spiking Neural Network for Robust Event-Based Optical Flow Estimation | Shuangming Yang1; Bernabé Linares-Barranco2; Yuzhu Wu1; Badong Chen3(1School of Electrical and Information Engineering, Tianjin University, Tianjin, China 2Instituto de Microelectrónica de Sevilla (CSIC and Universidad de Sevilla), Sevilla, Spain 3National Key Laboratory of Human-Machine Hybrid Augmented Intelligence, National Engineering Research Center for Visual Information and Applications, and Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University, Xi’an, China) | 用于鲁棒事件驱动光流估计的脉冲神经网络自监督高阶信息瓶颈学习 | IEEE Transactions on Pattern Analysis and Machine Intelligence 2025 Vol.47 No.4 P2280-2297 | 链接 |
23 | Photonic spiking neural network based on DML and DFB-SA laser chip for pattern classification | Xintao Zeng,1; Shuiying Xiang,1,*; Yanan Han,1; Yahui Zhang,1; Yuna Zhang,1; Xingxing Guo,1; Zhiquan Huang,1; Tao Zou,1; Yuechun Shi,2 and Yue Hao1(1State Key Laboratory of Integrated Service Networks, State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China 2Yongjiang Laboratory, Ningbo 315202, China *Corresponding author: syxiang@xidian.edu.cn) | 基于DML和DFB-SA激光芯片的光子脉冲神经网络用于模式分类 | Optics Express 2025 Vol.33 No.5 P12045-12058 | 链接 |
24 | Survey on Gradient Surrogate Algorithms for Spiking Deep Learning | 方维1,朱耀宇2,黄梓涵3,姚满4,余肇飞5,田永鸿1,3,6(北京大学深圳研究生院信息工程学院;中国科学院计算技术研究所;北京大学计算机学院;中国科学院自动化研究所;北京大学人工智能研究院;鹏城实验室) | 脉冲深度学习梯度替代算法研究综述 | 计算机学报 2025 | 链接 |
25 | QP-SNN: Quantized and Pruned Spiking Neural Networks | Wenjie Wei; Malu Zhang; Zijian Zhou; Ammar Belatreche; Yimeng Shan; Yu Liang; Honglin Cao; Jieyuan Zhang; Yang Yang | QP-SNN:量化剪枝脉冲神经网络 | 2025 | 链接 |
26 | Rethinking Spiking Neural Networks from an Ensemble Learning Perspective | Yongqi Ding; Lin Zuo; Mengmeng Jing; Pei He; Hanpu Deng | 从集成学习视角重新思考脉冲神经网络 | 2025 | 链接 |
27 | Spiking neural networks on FPGA: A survey of methodologies and recent advancements | Mehrzad Karamimanesh1; Ebrahim Abiri1; Mahyar Shahsavari2; Kourosh Hassanli1; André van Schaik3; Jason Eshraghian4(1Department of Electrical Engineering, Shiraz University of Technology, Shiraz, Iran; 2AI Department, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; 3The MARCS Institute, International Centre for Neuromorphic Systems, Western Sydney University, Australia; 4Department of Electrical Engineering, University of California Santa Cruz, Santa Cruz, CA, USA) | 脉冲神经网络在FPGA上的实现:方法学与最新进展综述 | Neural Networks 2025 Vol.186 P107256 | 链接 |
28 | Spatially Invariant Convolutional Spiking Neural Network For Resource-Constrained IoT Devices | Yadav, Chetalia; Reniwal, Bhupendra Singhb(aInterdisciplinary Research Division (IoT and Applications), Indian Institute of Technology, Rajasthan, Jodhpur, 342037, India; bElectrical Engineering Department, Indian Institute of Technology, Rajasthan, Jodhpur, 342037, India) | 面向资源受限物联网设备的空间不变卷积脉冲神经网络 | Circuits, Systems, and Signal Processing 2025 | 链接 |
29 | Advancing Neuromorphic Architecture Towards Emerging Spiking Neural Network on FPGA | Yingxue Gao1,2; Teng Wang1,2; Yang Yang1,2; Lei Gong1,2; Xianglan Chen1,2; Chao Wang1,2; Xi Li1,2; Xuehai Zhou1,2(1University of Science and Technology of China, Hefei, Anhui, China 2Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China) | 面向新兴FPGA脉冲神经网络的神经形态架构发展 | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2025 P1 | 链接 |
30 | Spike-timing dependent plasticity learning of small spiking neural network for image recognition | Kurbako, Aleksander V. a,b; Ezhov, Dmitry M. a; Ponomarenko, Vladimir I. a,b; Prokhorov, Mikhail D. a,b (aSaratov State University, 83 Astrakhanskaya Street, Saratov, 410012, Russian Federation; bSaratov Branch of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, 38 Zelenaya Street, Saratov, 410019, Russian Federation) | 基于脉冲时间依赖可塑性学习的小型脉冲神经网络图像识别 | European Physical Journal: Special Topics 2025 | 链接 |
文献阅读笔记:脉冲神经网络最新文献合集-X
最新推荐文章于 2025-09-17 07:20:21 发布