自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(783)
  • 收藏
  • 关注

原创 搞大模型等于洗数据?谈LLM的数据工程

最近1年研究大模型,有个很不好的现象,大家都认为做大模型,认为只要喂数据就行,甭管数据噪声。CV计算机视觉时代,需要人工标注每一个图片,分类检测分割,标注数据都需要97%以上准确率;有多少智能就需要多少人工。计算机视觉的鼻祖李飞飞,就是靠人工标注ImageNet 300M数据集,才走进大众视野。

2025-06-27 20:11:19 316

原创 大模型算法架构:DeepSeek技术演进及剖析

随着 ChatGPT 迅速走红,这两年大家在日常工作中使用 LLM 进行的场景越来越多。本系列将针对主流算法架构进行讲解。

2025-06-26 19:44:52 868

原创 国产大模型高考出分了:裸分683,选清华还是北大?

Seed1.6延续了Seed1.5在稀疏MoE(混合专家模型)领域的技术积累,采用23B激活参数与230B总参数规模进行预训练。其预训练过程通过三个阶段实现多模态能力融合与长上下文支持:

2025-06-26 19:42:31 737

原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。

2025-06-25 10:30:25 592

原创 大模型面试必备!超全面经指南+答案,轻松应对面试!

大模型面试必备!超全面经指南+答案,轻松应对面试!

2025-06-25 10:21:14 683

原创 大模型秘籍!小白也可以部署私有化大模型知识库!

在当今的人工智能浪潮中,大型语言模型(LLM)凭借其出色的文本处理和理解能力,已经成为了AI技术领域的重要组成部分。然而,商业化的LLM往往价格不菲,且存在隐私问题,这限制了广大研究者和开发者的创新与实验空间。幸运的是,开源社区如 Ollama 提供了高质量的替代方案,使得更多的用户和开发者能够便捷地探索和利用大型语言模型的强大功能。

2025-06-24 11:30:30 1017

原创 2025年超全大模型常见面试题(附答案),超详细!!

大模型相关的面试问题通常涉及模型的原理、应用、优化以及面试者对于该领域的理解和经验。以下是一些常见的大模型面试问题以及建议的回答方式:

2025-06-24 11:19:33 809

原创 我们为什么要用本地大模型?本地大模型入门指南!

大模型,在2023年主要称之为大型语言模型(Large Language Models),是一种基于人工智能和机器学习技术构建的先进模型,旨在理解和生成自然语言文本。这些模型通过分析和学习海量的文本数据,掌握语言的结构、语法、语义和上下文等复杂特性,从而能够执行各种语言相关的任务。LLM的能力包括但不限于文本生成、问答、文本摘要、翻译、情感分析等。

2025-06-23 10:33:57 973

原创 企业大模型知识库:解决企业知识管理与应用难点

大部分企业的知识管理有三个不足:缺乏长期规划、缺乏组织机制和文化、缺乏智能化,大模型+知识库的体系建设,从知识管理的底层切入,帮助企业探索多场景的知识应用形态,提升企业知识应用价值。

2025-06-23 10:32:38 722

原创 大语言模型与小语言模型之争,对比分析及启示

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-21 19:09:15 1053

原创 什么是大模型应用工程师?他们的就业前景如何?薪资待遇又怎样?

大模型应用工程师是专注于开发、部署和优化大型机器学习模型的专业人员。他们负责将大模型应用于实际场景,解决具体问题,提升业务价值。大模型应用工程师的工作通常涉及数据处理、模型训练、性能调优和系统集成等多个方面。研究和开发大型机器学习模型:包括但不限于深度学习、自然语言处理和计算机视觉等领域的模型。设计和实现高效的算法:优化模型性能和资源消耗,确保模型能够在实际应用中快速、准确地运行。与数据科学家和工程师合作:处理和分析大规模数据集,为模型训练提供高质量的数据支持。跟踪最新的 AI 研究进展。

2025-06-21 18:33:50 951

原创 大模型超详细盘点!常用的大模型及其优缺点、有潜力的大模型、国内大模型行业落地的现况、国内大模型优势、挑战与前景

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-19 18:49:08 1401

原创 大模型全解:大模型的分类,学会区分大模型

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-19 18:47:32 962

原创 MCP技术浪潮中的Agent应用开发新范式

MCP (Model Context Protocol,模型上下文协议)是一个标准化协议,定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。MCP 的目标是创建一个通用标准,使 AI 应用程序的开发和集成变得更加简单和统一。

2025-06-18 09:49:14 856

原创 AI Agent四种设计范式(Agent >GPT5 ? )

在过去一周内,从arxiv网站查找大语言模型应用的论文,创建一个不同领域的Markdown表格。大家可以想一下:     如果是让你去做需要如何实现,需要哪些步骤?     如果让Agent智能体去实现,它会怎么处理?

2025-06-18 09:47:07 743

原创 一文全解大模型应用开发入门

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-17 11:33:12 613

原创 大模型应用和体系梳理

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-17 11:30:41 506

原创 天天都在用大模型,但大模型到底是个啥?

理解温度后,我们再学习 token 这个概念。那我问你。大模型给出回答里,“look in my eyes” 是一个词吗?很明显不是。在大语言模型场景,其实每次添加的是一个token,而不是词。那什么是 token?实际上,大语言模型是个文盲,它完全不懂 look in my eyes 的含义,只会利用一个叫分词器的家伙,把这些文本进行切割,切完的小文本就是一个个 token。为什么要切?

2025-06-16 11:56:09 897

原创 最新「大模型简史」整理!从Transformer(2017)到DeepSeek-R1(2025)

2025年初,我国推出了一款开创性且高性价比的「大型语言模型」(Large Language Model, LLM) — — DeepSeek-R1,引发了AI领域的巨大变革。

2025-06-16 11:54:20 814

原创 AI大模型问答系统的主流程揭秘:从用户提问到答案生成的背后逻辑

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-13 11:23:47 861

原创 大模型必读:全面解析垂直领域大模型建设路径与实践场景

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-06-13 11:21:15 974

原创 普通程序员如何成功转行AI大模型?五大关键步骤详解,非常详细!!!

人工智能领域,尤其是大模型方向,正吸引越来越多的程序员转型。对于普通程序员来说,转向AI大模型需要掌握数学基础(如线性代数、微积分)、编程语言(特别是Python),以及机器学习理论(包括监督学习、深度学习等)。此外,数据处理技能、框架工具(如TensorFlow、PyTorch)和项目实践经验也至关重要。通过参与在线课程、开源项目和个人作品集的构建,程序员可以逐步深入自然语言处理(NLP)或计算机视觉等专业领域。持续学习和社区参与也是保持竞争力的关键。文末提供了大模型学习资料包,帮助零基础小白快速入门。

2025-05-15 21:51:43 582

原创 AI大模型之争:通用性与垂直性,哪个更具优势?

AI大模型在人工智能领域展现出巨大潜力,主要分为通用大模型和垂直大模型。通用大模型如GPT、BERT等,具有广泛的适用性和强大的泛化能力,适用于多种任务;而垂直大模型则专注于特定领域,如医疗、金融,提供更精准的解决方案。两者各有优势,通用大模型在技术引领和灵活性上表现突出,垂直大模型则在专业性和定制化服务上更具竞争力。实际应用中,两者可以互补,通用大模型作为基础平台,垂直大模型进行二次开发,满足特定需求。然而,大模型的发展也面临算力、数据和算法等挑战,未来可能出现结合两者优势的混合型模型,以应对多样化的AI

2025-05-15 17:01:53 809

原创 AI大模型的就业岗位及薪资(附学习指南)

随着AI技术的快速发展,大模型(如GPT、BERT等)已成为推动人工智能创新的核心力量,预计将带来大量就业机会。相关岗位包括AI模型研发工程师、数据科学家、算法工程师、AI应用开发工程师、AI平台架构师、AI产品经理和AI测试工程师等。学习大模型技术不仅能提升个人在数据处理、分析和决策制定方面的能力,还能增强就业竞争力,为创新创业奠定基础。大模型在教育、医疗、金融、制造等领域的应用日益广泛,推动行业创新。对于零基础学习者,系统性的学习资料和规划将有助于快速入门并掌握大模型技术。

2025-05-15 15:43:32 987

原创 从普通程序员到高薪专家:如何在大模型领域实现薪资翻倍?

文章探讨了普通程序员如何成功转型为大模型领域从业者,并实现薪资翻倍的目标。首先,强调了打好基础的重要性,建议学习机器学习和深度学习的基础知识。其次,鼓励通过实践项目来提升技能,并建议关注行业动态,参与技术交流。此外,强调了团队合作的重要性,因为大模型项目通常需要跨专业协作。文章还提供了大模型学习资料,包括学习路线、实战案例、视频和PDF资源,帮助零基础小白系统性地学习大模型技术。最后,文章鼓励程序员通过努力学习和实践,成功转型并实现职业发展。

2025-05-13 15:51:39 757

原创 2025年强烈推荐:30+程序员转行大模型:一名35岁老程序员的真实经验

大家好,我叫李华,一名10年的资深程序员,在经历了10多年传统软件开发工作后,在35岁时毅然决定投身到大模型这一新兴领域。我的故事希望能为那些正在考虑职业转型的技术人员提供一些启示。

2025-05-13 15:24:23 1204

原创 程序员为什么要学习AI大模型?

在人工智能技术的推动下,AI大模型已成为软件行业发展的核心动力。本文从程序员视角探讨了AI大模型的定义、应用及其重要性。AI大模型通过处理海量数据,展现出强大的智能能力,广泛应用于自然语言处理、图像识别、推荐系统和智能制造等领域。程序员学习大模型技术不仅能提升技术能力、拓宽视野,还能促进跨界合作与创新思维。文章还提供了大模型学习资料,帮助程序员从零基础系统性地掌握大模型技术,推动职业发展。

2025-05-13 15:01:21 859

原创 深度探索 DeepSeek 微调:LoRA 与全参数微调实战指南

DeepSeek 作为强大的大模型,虽然在通用任务上表现出色,但在特定领域(如医学、法律、金融等)可能无法满足需求。为了提升模型在特定任务上的表现,本文介绍了两种微调策略:LoRA(低秩适配)和全参数微调。LoRA 适用于计算资源有限的场景,通过低秩矩阵更新部分权重,减少显存占用,适合小样本微调;全参数微调则适用于计算资源充足、任务复杂的场景,通过更新所有参数实现最佳效果,但训练成本较高。文章还提供了详细的代码示例,帮助开发者高效定制 DeepSeek 模型,并附有大模型AGI-CSDN独家资料包。

2025-05-13 14:40:35 798

原创 工业大模型全景解析:53个大模型案例深度探索

工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。目前,市场上已涌现出各种工业大模型。按照发布主体可划分为· 头部工业企业拥有海量专业数据、应用场景丰富,,引入业界领先的通用大模型,在此基础之上整合行业知识与特征进行训练和调优;通用大模型投入数据量大、算力成本高、算法难度大,一般由头部AI/互联网公司构建;

2025-05-12 16:06:13 1012

原创 如何构建企业级的AI大模型?只看这篇就够了

企业级AI大模型的落地应用是一个系统性工程,涉及多个关键步骤。首先,企业需从众多模型中选择并评估最适合的模型,确保其满足业务需求。接着,利用企业内部数据进行模型微调和训练,提升其在特定场景中的表现。数据准备阶段包括数据收集、清洗、标注和增强,以确保数据质量。模型训练完成后,需进行优化和反馈,持续改进模型性能。最后,模型部署时需考虑安全性、可扩展性和可维护性,确保其稳定运行。整个过程是一个循环迭代的系统,帮助企业不断优化大模型的性能和效果。

2025-05-12 15:04:06 854

原创 AI时代,一文彻底搞懂天天被提到的Agent是什么?

AI Agent(人工智能代理)是一种能够感知环境、自主决策并执行动作的智能实体,具备自主性、反应性、目标导向和学习能力。与传统AI系统不同,AI Agent不仅能回答问题,还能主动完成复杂任务。其核心组件包括大模型(提供语言理解与推理能力)、任务规划(分解与调度任务)、工具使用(与外部工具交互)和记忆(存储经验与知识)。AI Agent的工作循环包括接收目标、观察环境、规划行动、执行行动、观察结果、调整策略,直至目标达成。这种自主性和反应式架构使其能够像人类一样通过试错优化行动,而非简单执行预设指令。

2025-05-12 14:47:52 1318

原创 从大模型(LLM)、检索增强生成(RAG)到智能体(Agent)的应用

大型语言模型(LLM)、检索增强生成(RAG)和智能体(Agent)是推动人工智能技术发展的关键。LLM提供基础的语言理解和生成能力,RAG结合特定知识库生成更准确的输出,而智能体则综合运用LLM和RAG等技术,在复杂环境中执行任务。LLM如GPT系列基于Transformer架构,通过大规模文本数据预训练,具备强大的自然语言处理能力。OpenAI的GPT-4工程化应用包括免费版、Plus版和团队版,提供对话、图文生成及实时知识获取等功能。GPTs插件允许用户结合自有指令、知识库或API服务,创建自定义模型

2025-05-10 22:44:45 997

原创 Agent、RAG与LangChain:AI领域不可或缺的‘三位一体

在人工智能领域,Agent、RAG和LangChain是三个关键技术,共同构建了智能系统的基础。Agent作为智能代理,能够自主感知环境并执行任务,如客服助手;RAG(检索增强生成)通过结合信息检索和语言生成,提升大模型回答的准确性,减少“幻觉”问题;LangChain则是一个编程框架,帮助开发者高效整合多种数据源和工具,简化应用开发。三者协同工作,能够实现智能问答、内容生成等功能,尽管面临数据处理效率和信息更新等挑战,但它们在构建智能系统中展现出巨大潜力。文末还提供了大模型学习资料,帮助读者深入理解和应用

2025-05-10 21:47:12 929

原创 开源一个RAG大模型本地知识库问答机器人-ChatWiki

ChatWiki是一款基于大语言模型(LLM)和检索增强生成(RAG)技术的开源知识库AI问答系统,旨在帮助企业快速搭建专属AI问答系统。其特点包括支持多种主流模型的一键接入、自动数据预处理、直观的可视化界面设计,以及适配不同业务场景的多渠道支持(如H5链接、微信公众号、小程序等)。系统通过导入企业知识库,确保AI机器人严格按照企业要求回答问题,避免信息泄露和错误响应。部署ChatWiki需要一台具备联网功能的Linux服务器,最低配置为2核CPU和4GB内存,并通过Docker进行安装。ChatWiki的

2025-05-10 17:54:19 1046

原创 用通俗易懂的方式讲解:12 个大模型 RAG 痛点及解决方案

我们探讨了开发RAG管道中的12个痛点(来自论文的7个和额外的5个),并为所有这些问题提供了相应的解决方案。读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用如果你是零基础小白,想快速入门大模型是可以考虑的。一方面是学习时间相对较短,学习内容更全面更集中。二方面是可以根据这些资料规划好学习计划和方向。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!😝有需要的小伙伴,可以保存图片到。

2025-05-08 15:33:12 611

原创 读懂RAG这一篇就够了,万字详述RAG的5步流程和12个优化策略

在本文中,我们一起深入探索了RAG(Relevance- Generation)系统的各个方面,从初步的文档准备到复杂的多代理检索策略,希望得到了对RAG一个全面且深入的认识。这个旅程虽然充满挑战,但同样展现了RAG系统在处理大规模信息检索和理解任务时的巨大潜力。通过细致地优化查询问题,灵活运用多级索引和路由技术,以及实施先进的检索策略,我们能够显著提高系统的效率和准确性,从而更好地满足用户的需求。RAG系统的未来发展令人充满期待,随着技术的不断进步,我们有理由相信它将在各行各业中发挥越来越重要的作用。

2025-05-08 15:07:52 960

原创 RAG知识库:一文带你速通RAG、知识库和LLM

定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。

2025-05-08 14:34:13 1199

原创 本地部署大模型与基于RAG构建私有知识库,一步到位!

以上就是本地大模型部署和基于RAG方案的私有知识库搭建的基本操作。除此之外,还有更多丰富有趣的功能等待探索。如今大模型遍布各行各业、各个领域,基于RAG方案的私有知识库技术也逐渐发展,成为提升个人工作效率与创造潜能的新风尚。本地部署模型意味着用户能在自己的设备上享受即时响应的智能辅助,无需依赖云端,既保护了个人数据隐私,又确保了操作的低延迟与高可靠性。结合RAG方案的私有知识库,则让每位用户能够构建专属自己的知识宇宙。

2025-05-08 14:16:45 1334

原创 RAG与知识库搭建,手把手教你构建RAG系统

自从发现可以利用自有数据来增强大语言模型(LLM)的能力以来,如何将 LLM 的通用知识与个人数据有效结合一直是热门话题。关于使用微调(fine-tuning)还是检索增强生成(RAG)来实现这一目标的讨论持续不断。检索增强生成 (RAG) 是一种使用来自私有或专有数据源的信息来辅助文本生成的技术。它将检索模型(设计用于搜索大型数据集或知识库)和生成模型(例如大型语言模型 (LLM),此类模型会使用检索到的信息生成可供阅读的文本回复)结合在一起。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-07 17:02:49 949

原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库(附教程)

RAG,即检索增强生成(Retrieval-Augmented Generation),是一种先进的自然语言处理技术架构,它旨在克服传统大型语言模型(LLMs)在处理开放域问题时的信息容量限制和时效性不足。RAG的核心机制融合了信息检索系统的精确性和语言模型的强大生成能力,为基于自然语言的任务提供了更为灵活和精准的解决方案。前排提示,文末有大模型AGI-CSDN独家资料包哦!

2025-05-07 15:44:55 1238

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除