大模型LLM微调新方法,不需要修改权重

有一种新的有前景的方法可以在不修改 LLM 权重的情况下对其进行微调,称为代理调优(Liu 等人arxiv.org/abs/2401.08565 )。

它是如何工作的?这是一种简单的解码时方法,您可以在其中修改目标 LLM 的 logits。特别是,您可以计算较小的基础模型和微调模型之间的 logits 差异,然后将该差异应用于目标模型的 logits。

更具体地说,假设目标是改进大目标模型 (M1)。

主要思想是采用两个小模型:

- 小型基础型号(M2)

- 微调的基础模型 (M3)

然后,您只需将较小模型的预测(输出词汇表的对数)的差异应用于目标模型 M1。

改进后的目标模型的输出计算为 M1 *(x) = M1 (x) + [M3 (x) - M2 (x)]

根据实验结果,这种方法效果出奇的好。作者对此进行了测试

A. 指令调优

B. 领域适应

C. 针对特定任务的微调

为了简洁起见,只关注A点,下面是一个具体的例子:

  1. 目标是将 Llama 2 70B Base 模型改进到 Llama 2 70B Chat 的水平,但不执行任何 RLHF 从 Base -> Chat 获取模型。

  2. 他们采用了小 10 倍的 Llama 2 7B 模型,并对其进行了指令微调。

  3. 微调后,他们计算了 7B Base 和 7B Finetuned 之间输出词汇的 logits 差异

  4. 他们将 3) 的差异应用到 Llama 2 70B 基础模型。这使得 70B Base 模型的性能非常接近 70B Chat。

当然,这种方法唯一的警告是,较小的模型必须使用与较大模型相同的词汇进行训练。理论上,如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值