bzoj3992: [SDOI2015]序列统计
Description
小C有一个集合S,里面的元素都是小于M的非负整数。他用程序编写了一个数列生成器,可以生成一个长度为N的数列,数列中的每个数都属于集合S。
小C用这个生成器生成了许多这样的数列。但是小C有一个问题需要你的帮助:给定整数x,求所有可以生成出的,且满足数列中所有数的乘积mod M的值等于x的不同的数列的有多少个。小C认为,两个数列{Ai}和{Bi}不同,当且仅当至少存在一个整数i,满足Ai≠Bi。另外,小C认为这个问题的答案可能很大,因此他只需要你帮助他求出答案mod 1004535809的值就可以了。
Input
一行,四个整数,N、M、x、|S|,其中|S|为集合S中元素个数。第二行,|S|个整数,表示集合S中的所有元素。
Output
一行,一个整数,表示你求出的种类数mod 1004535809的值。
Sample Input
4 3 1 2
1 2
Sample Output
8
HINT
【样例说明】
可以生成的满足要求的不同的数列有(1,1,1,1)、(1,1,2,2)、(1,2,1,2)、(1,2,2,1)、(2,1,1,2)、(2,1,2,1)、(2,2,1,1)、(2,2,2,2)。
【数据规模和约定】
对于10%的数据,1<=N<=1000;
对于30%的数据,3<=M<=100;
对于60%的数据,3<=M<=800;
对于全部的数据,1<=N<=109,3<=M<=8000,M为质数,1<=x<=M-1,输入数据保证集合S中元素不重复
知识点:快速数论变换
其实学了FFT之后再学NTT已经只差临门一脚了。
首先复习一下FFT
复习FFT
离散型快速傅立叶变换如下
Xk=∑n=0N−1xne−2πiNnkk=0,1⋯N−1 X k = ∑ n = 0 N − 1 x n e − 2 π i N n k k = 0 , 1 ⋯ N − 1
离散型快速傅立叶逆变换如下
xn=1N∑n=0N−1Xke2πiNnkk=0,1⋯N−1 x n = 1 N ∑ n = 0 N − 1 X k e 2 π i N n k k = 0 , 1 ⋯ N − 1
引入NTT
如今快速数论变换是在 Zp Z p 上进行的。
再快速傅立叶变换中,有一个神奇的单位复根叫做
ω=e−2πiN ω = e − 2 π i N
这玩意儿有一个神奇的性质,就是 ωN=1 ω N = 1 并且 ωk ω k 当 k=0,1⋯N