Lambda表达式4:Stream的并行流

本文深入探讨了Java8中并行流的使用与优化,以及Fork/Join框架的工作原理和优势。通过实例展示了如何利用并行流提高数据处理效率,并解释了Fork/Join框架的工作窃取模式如何减少线程等待时间,提升性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基础介绍

并行流 就是把一个内容分成多个数据块,并用不同的线程分
别处理每个数据块的流
Java 8 中将并行进行了优化,我们可以很容易的对数据进行并行操作。
Stream API 可以声明性地通过 parallel() 与sequential() 在并行流与顺序流之间进行切换。

2、Fork/Join 框架

将一个大任务,进行拆分(fork)成若干个
小任务(拆到不可再拆时),再将一个个的小任务运算的结果进行 join 汇总。

2.1、工作模式

“工作窃取”模式(work-stealing):
当执行新的任务时它可以将其拆分分成更小的任务执行,并将小任务加到线
程队列中,然后再从一个随机线程的队列中偷一个并把它放在自己的队列中。
相对于一般的线程池实现,fork/join框架的优势体现在对其中包含的任务的
处理方式上.在一般的线程池中,如果一个线程正在执行的任务由于某些原因
无法继续运行,那么该线程会处于等待状态。
而在fork/join框架实现中,如果
某个子问题由于等待另外一个子问题的完成而无法继续运行.那么处理该子
问题的线程会主动寻找其他尚未运行的子问题来执行.这种方式减少了线程
的等待时间,提高了性能

Instant start = Instant.now();
LongStream.range(0, 10000000000l)
			.parallel()
			.reduce(Long::sum);
Instant end = Instant.now();
System.out.println(Duration.between(start, end).toMillis()); //输出:3285

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值