毫米波雷达系列(四):4D毫米波雷达系统方案

本文详细解释了4D毫米波雷达在距离、精度和角分辨率方面的优势,重点介绍了通过增大天线孔径和利用MIMO技术来提高角度分辨率的方法。文章还对比了多MMIC级联和专用芯片组两种主要的4D雷达设计方案及其优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4D毫米波雷达的性能比一般的“3D”雷达要高,体现在距离远,精度高,角分辨率高等方面。

那么4D成像毫米波雷达是如何做到的呢?

本篇文章从雷达指标方程上进行简要的解释,以及介绍一下主流的4D毫米波雷达系统方案。

1. 雷达关键指标方程

根据雷达探测原理和雷达方程,毫米波雷达的关键指标主要影响因素如下:

图片来源:申万宏源

因此,提升测距和测速性能,主要是提升带宽和优化调制方式。而提升角度性能,主要依靠提升天线孔径。前者相对容易,而后者是4D成像雷达的设计关键。

2. 为什么必须要增大天线孔径

如果让雷达波束尽可能窄,配合扫描机构实现一定范围内的扫描,就可以实现高的角分辨率。
没错,这就是目前自动驾驶领域的当红炸子鸡——Lidar(当然更严谨来说,是ToF扫描激光雷达,不是Flash或者FMCW激光雷达):


然而,这对于毫米波雷达是极为困难的。

原因是,毫米波点源天线的辐射是趋近于球面波的,必须要通过对天线进行设计,才能缩小其波瓣宽度,同时增加天线增益,提升辐射距离。


雷达波束宽度的计算公式是:

其中,θ为波束宽度,λ为天线工作波长,D为天线口径,α为天线指向误差角度(主要受天线设计和加工精度影响)。因此,波束宽度主要和雷达孔径D有关,孔径越大,雷达波束越窄,指向性越强。

一种方案是增大天线物理尺寸,雷达尺寸越大,孔径越大,例如“大锅盖”机械扫描雷达:

汽车显然不可能顶着一个“大锅盖”行驶。


当然,也不是说绝对不行,比如1970年代顶着大锅盖雷达的实验汽车。这种车如果放在现在,回头率应该老高了。。。。(1970年回头率也高。。)


所以,车用雷达的体积需要尽量小。

目前最新的雷达天线都是印刷在电路板上的微带天线,不过这种雷达3dB波束宽度基本都在30-60°之间。


那么如何在这么大的波束宽度情况下,来实现精确测角呢?
这就是MIMO技术。


3. 通过MIMO提升角分辨率

根据角分辨率公式

其中:

  1. 波长λ越小,角度分辨率越高。目前77/79GHz雷达取代24GHz雷达就有部分这个原因。
  2. 采样的通道个数m越多,分辨率越高。
  3. 接收天线阵元之间的距离L越大,分辨率越高。
  4. θ越小时(例如天线正前方),其分辨率越高,θ越大时(例如FOV边缘),分辨率越低。

由于λ和θ一般不会调整,因此,提升角分辨率主要依靠增大m和L,即雷达孔径
由于增加L会使得视场角FOV的减小,如前所示,最大检测角度为:

因此,增大孔径更多的是依靠增加通道个数m,这就是MIMO(多输入多输出,Multi-input Multi output)

MIMO的核心思想是采用不同位置的收发单元进行多次测量,通过接收信号的差异解算角度。MIMO雷达拥有多个发射天线(例如a个)和多个接收天线(例如b个),即生成一个 m = a × b的虚拟天线阵列,可以实现较大的虚拟孔径。
a个天线发射相互正交的信号,多波形信号在空间保持独立。b个接收天线采用a个匹配滤波器对回波进行匹配,从而可以得到m = a × b个通道的回波数据。



MIMO雷达通过采用稀疏布阵,实现较大的虚拟孔径,从而大幅提升角分辨率。

如下是TI测试的多片级联雷达(MIMO)的FFT输出图,可以看到,通道数越多,峰值越尖,精细程度就越高,角分辨率越高。

图片来源:TI

4. 4D毫米波雷达设计方案

市面上有很多采用MIMO技术的4D成像毫米波雷达,通道数从12个到最高的2304个,如下图所示。

其中,实现方案主要有2种:

(使用超导材料的方案也经常被认为是第3种方案,不过该方案量产可行性还很低,暂不作为主流方案分析)

方案1:多MMIC级联

使用多片MMIC级联,例如2级联、4级联或者8级联等,通过特殊的软件算法和天线设计,实现高倍数的虚拟MIMO,通过增大的虚拟孔径,大幅提升角分辨率。

使用该方案的企业很多,包括大陆、博世、采埃孚、华为、森思泰克等。例如大陆ARS548雷达:



该方案的优势是:

  1. 技术成熟度高,产品稳定性好;
  2. 前期开发难度低,上市周期短;

该方案的劣势是:

  1. 成本较高,功耗较高,尺寸大;
  2. 由于级联络线不可持续,无法通过更多芯片堆叠的方式,继续提升产品性能;

方案2:专用芯片组

研发新的芯片组,将多发多收MMIC和处理器集成在一套专用的芯片组中。
采用该方案的代表企业:Arbe、Uhnder、Vayyar、Mobileye等。例如Arbe的产品:

该方案的优势是:

  1. 集成度高,尺寸小;
  2. 可以实现更加灵活的调制方式和架构,能够实现更大的雷达孔径,性能更高;

该方案的劣势是:

  1. 芯片集成度高,通道串扰、散热等挑战更大;
  2. 技术成熟度低,芯片开发周期长,迭代节奏慢;

5. 结论

4D毫米波雷达主要通过增加发射&接收通道的个数,增加雷达虚拟口径,来提升毫米波雷达的角度分辨率。

由于成熟度的原因,当前量产的4D成像毫米波雷达主要以多MMIC级联的架构为主。由于专用芯片方案降本潜力更大、性能更高、体积更小,业内普遍认为集成化、芯片化会成为毫米波雷达发展的未来趋势,专用芯片方案将会是未来4D成像毫米波雷达的主流方案。


我是雪岭飞花,汽车行业24年开发经验,自动驾驶行业发展的见证者和参与者,自动驾驶感知和控制系统资深专家。做有深度、高质量的技术分享,推动自动驾驶技术的普及和发展。

更多文章请参考:雪岭飞花:文章索引 - 知乎

如果文章对您有帮助,还请关注、点赞、收藏。如有疏漏或者错误,还请批评指正。

 微信公众号:雪岭飞花

微信: maxhnnl

知乎: https://www.zhihu.com/people/lwascl-73

图片

### 技术差异 普通毫米波雷达主要通过发射电磁并接收反射信号来测量目标的距离、速度和角度,其功能局限于二维平面内的探测能力[^3]。然而,4D毫米波雷达不仅具备上述功能,还额外增加了对目标高度的感知能力,从而实现了三维空间的目标定位[^4]。 #### 数据维度提升 相比于传统毫米波雷达仅能获取距离、速度和水平方向的角度信息,4D毫米波雷达引入了第维的高度信息,使得它可以构建更为精确的空间模型[^1]。这一改进显著增强了雷达对于复杂交通环境中障碍物的理解能力。 #### 静态目标检测增强 在静态目标识别方面,常规毫米波雷达由于缺乏足够的分辨率和支持特性,往往难以有效区分静止不动的对象与背景噪声;而新一代4D版本则利用更高的角分辨力解决了这个问题,即使面对完全停止状态下的车辆也能清晰辨别出来。 ### 应用场景对比 #### 自动驾驶辅助系统 (ADAS) 对于高级别的自动驾驶应用而言,4D毫米波雷达因其卓越的空间解析能力和全天候工作表现成为理想选择之一。特别是在雨雪雾等极端气候条件下,相较于容易受到干扰影响精度下降明显的光学传感器如摄像头或者LiDAR来说更加可靠稳定[^2]。 ```python # 示例代码展示如何模拟两种不同类型雷达的数据处理过程 import numpy as np def process_standard_radar(data): """ 处理标准毫米波雷达返回的距离、速度和角度 """ distance, velocity, angle = data[:3] processed_data = { 'distance': distance, 'velocity': velocity, 'angle_horizontal': angle } return processed_data def process_4d_millimeter_wave_radar(data): """ 添加高度参数至现有基础之上 """ distance, velocity, angle_h, height = data[:4] processed_data = { 'distance': distance, 'velocity': velocity, 'angle_horizontal': angle_h, 'height': height # 新增高度信息 } return processed_data standard_output = process_standard_radar([100, 5, 30]) four_d_output = process_4d_millimeter_wave_radar([100, 5, 30, 2]) print("Standard Radar Output:", standard_output) print("4D Millimeter Wave Radar Output:", four_d_output) ``` ### 成本效益分析 尽管4D毫米波雷达提供了更多价值的功能扩展,但从经济角度来看它的制造成本远低于同等效能级别的激光扫描仪设备(Lidar),大约只是后者价格水平上的十分之一左右。因此,在追求性价比平衡的设计方案里显得格外具有吸引力。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值