人脸检测之MTCNN(一)——python中使用tensorflow运行模型

本文详细介绍了如何在Python中利用TensorFlow实现MTCNN进行人脸检测,包括运行环境搭建、模型建立、PNET、RNET和ONET的推理流程,并提供测试案例。内容主要参考了相关博客和论文。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、背景

MTCNN是一种经典的人脸检测方法,通过三个阶段的深度卷积网络级联,实现“由粗到精”的检测过程,最终能够输出一幅图像中的人脸框坐标与每个人脸的5个特征点坐标。网络上有关该论文与方法的解读有很多,在最后的参考中我会放上自己觉得不错的几篇链接。这篇文章主要给出Python中调用训练好的MTCNN模型做正向推理的过程,其中大部分参考自https://blog.csdn.net/BEYONDldh/article/details/105221244,感谢这位博主的无私分享。我会给出所有阶段的实现代码,并在必要部分结合论文做注释说明。

二、实现

1、运行环境搭建

我使用的是基于win10的64bit系统,安装Python,和tf2、opencv。

2、模型的建立

在这里插入图片描述
上图是MTCNN论文中的模型部分介绍,总共三个模型,其中基本由卷积层、池化层、全连接层组成,网络结构比较简单。 链接中提供了训练好的三个网络权重,这里我们只需要建立模型后加载权重信息。相关代码如下

# 构造PNET
def 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mega_Li

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值