Windows下安装LLama-Factory

        在进行安装前,请先确认你的GPU能支撑起训练的显存。如果和可怜的我一样是4GB可以选择上云或者换一个好一点的显卡。并且确定你安装了显卡驱动版本在官方给的版本以上,如果没有安装,详细参考我的另一篇文章:LLama-Factory运行异常,CUDA没安装,nvidia-smi的版本假的?-CSDN博客

        注意nvidia-smi不一定是你的版本,我也被坑了一次,然后重新装了一遍。

一、下载LLamaFactory

       llama-factory地址,如果你使用git拉取代码,可能会因为网络问题拉取失败,可以多试几次,或者直接下载文件包。

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

二、环境准备

        针对LLamaFactory的安装软硬件环境,官方文档已经给出了软硬件的要求:

### Windows安装 LLaMA-Factory 教程 #### 创建并配置开发环境 为了确保顺利运行,建议创建一个新的 Python 虚拟环境来管理依赖项。通过 Anaconda 或 Miniconda 可以轻松完成此操作。 ```bash conda create -n deeplearning python=3.11 -y conda activate deeplearning ``` 这会建立名为 `deeplearning` 的新环境,并将其激活[^3]。 #### 获取源码 使用 Git 将最新的 LLaMA-Factory 仓库克隆到本地计算机: ```bash git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLAMA-Factory ``` 上述命令仅获取最新提交的内容,减少不必要的历史记录占用空间和时间成本[^2]。 #### 安装必要的库文件 进入项目目录后,按照官方文档说明安装所需的 Python 库和其他软件包。通常情况下,可以通过 pip 来批量安装这些需求: ```bash pip install -r requirements.txt ``` 需要注意的是,在某些特定硬件环境下可能需要调整 CUDA 版本匹配显卡驱动程序版本。例如,如果遇到 nvidia-smi 显示的 GPU 驱动版本与预期不符的情况,则需更新或降级相应的组件以保持兼容性。 #### 测试安装情况 最后一步是对刚设置好的环境进行简单的测试验证其功能正常与否。可以尝试加载预训练模型或者执行一些基本的数据处理任务来看看是否有任何错误提示出现。 #### 使用评估工具 LLaMA Factory 提供了内置的评估工具用于衡量模型性能。该工具能够自动化地计算 BLEU 和 ROUGE 分数并将结果保存下来以便后续分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值