跑mask2former(自用)

1. 运行docker

基本命令:

sudo docker ps -a        (列出所有容器状态)

sudo docker run -dit -v /hdd/lyh/mask2former:/mask --gpus '"device=0,1"' --shm-size 16G --name mask 11.1:v6        (创建docker容器,用镜像11.1:v6,容器名称为mask,将主机目录 /hdd/lyh/mask2former 挂载到容器内的 /mask 目录。这允许容器访问和使用主机上的该目录中的文件和数据。

返回的是容器id 

sudo docker images(列出本地所有docker镜像)

sudo docker exec -it mask bash(运行容器)

sudo docker stop mask(停止容器)

2. conda虚拟环境

在容器中,执行这两条指令

conda activate mask

cd /mask/Mask2Former

3. 训练和测试

训练命令:

python train_net.py --num-gpus 2 --config-file ./configs/s4_maskformer2_R50_bs16_90k.yaml

测试命令:

python train_net.py --num-gpus 2 --config-file ./configs/s4_maskformer2_R50_bs16_90k.yaml --eval-only MODEL.WEIGHTS path/to/your/.pth(在训练命令的基础上,多了eval-only和.pth文件的路径)

比如

python train_net.py --num-gpus 2 --config-file ./configs/s4_maskformer2_R50_bs16_90k.yaml --eval-only MODEL.WEIGHTS ./output/avs_s4/audio_test/newpth/model_final.pth

### Mask2Former 论文下载与研究 #### 关于Mask2Former的研究背景 Mask2Former 是一种基于掩码分类架构的方法,它继承并改进了 MaskFormer 的设计理念。MaskFormer 将语义分割和实例分割的任务统一定义为 mask 分类问题[^4],而 Mask2Former 则进一步引入了 masked attention 机制,并优化了解码器中的 self-attention 和 cross-attention 的顺序[^2]。 #### 如何获取 Mask2Former 相关论文 为了深入理解 Mask2Former 的技术细节及其创新点,可以从以下几个方面入手: 1. **官方论文地址**: Mask2Former 的原始论文通常可以在学术资源网站上找到,例如 arXiv 或 CVPR 官方会议页面。可以通过搜索引擎输入关键词 “Mask2Former paper” 来定位到具体的 PDF 文件链接。 2. **GitHub 实现代码**: 很多深度学习模型都有开源实现版本,可以访问 GitHub 并搜索项目名称 “Mask2Former”。这些项目的 README 文档中往往会提供详细的论文链接以及预训练模型的下载地址。 3. **在线学术数据库**: 使用 Google Scholar (https://scholar.google.com/) 输入关键字 “Mask2Former”,能够快速检索到相关研究成果及引用情况。 #### 技术核心解析 Mask2Former 主要贡献在于其提出的几个关键技术点: - 掩码注意力机制(masked attention mechanism),增强了模型对于复杂场景的理解能力。 - 调整解码器结构设计,重新安排自注意层(self-attention)与交叉注意层(cross-attention),从而提升性能表现。 - 提出了重要性采样(importance sampling)策略用于加速训练过程效率。 以下是简单的伪代码表示如何利用上述方法完成图像分割任务: ```python def mask2former_inference(image, model): # 图像预处理阶段 processed_image = preprocess(image) # 模型推理得到 N 个二进制掩码和对应类别分数 masks, class_scores = model(processed_image) # 后处理:筛选高置信度的结果 final_masks = [] for i in range(len(masks)): if class_scores[i] > threshold: final_masks.append(masks[i]) return final_masks ``` #### 总结 通过对 Mask2Former 架构的学习可以看出,该框架不仅延续了 DETR 中无锚框检测的思想,而且针对特定应用场景做了多项针对性改进,在多个公开数据集上的实验表明其具有良好的泛化能力和高效性[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值