配置change-agent环境(自用)

在rd调研用的机器上找找有没有比较基础的镜像

iregistry.baidu-int.com/easydata-privatization/easydata-python-base                                              ubuntu2004-py39-2.2.0-202503281110                                                 a0f288c81c38   5 weeks ago     1.56GB

感觉这个看起来很基础,那直接起容器吧。不行,点进去发现是bml用户,估计比较麻烦。

那还是用上次llava的镜像吧。

docker run --name change-agent \
    --net=host \
    --privileged \
    --cap-add=SYS_PTRACE --shm-size 5g \
    --gpus all \
    -v /ssd2/lixiang/rs:/ssd2/lixiang/rs \
    -itd \
    vkashyap10/llava-next:latest /bin/bash

按照github的指引配好了环境,其中torch==2.0.1+cu118这一步不行,就去torch官网(Previous PyTorch Versions | PyTorch)找了命令

装好环境后,下载数据集。

https://huggingface.co/datasets/lcybuaa/LEVIR-MCI/tree/main 

额这个块引用的东西 废弃 没用上,用的下面的

使用 datasets 库下载数据集

安装库
首先,确保你安装了 datasets 库。你可以通过 pip 安装:

pip install datasets

加载数据集
使用 datasets 库中的 load_dataset 函数可以轻松下载和加载数据集。

from datasets import load_dataset

# 替换 'dataset_name' 为你想要下载的数据集名称
dataset = load_dataset('dataset_name')

# 示例:下载 'imdb' 数据集
imdb_dataset = load_dataset('imdb')

下载到这个目录:/ssd2/lixiang/rs/Change-Agent/dataset

# 下载数据集
# 这种方式,数据集会保存到"/本地路径"中
huggingface-cli download --repo-type dataset --token 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 --resume-download lcybuaa/LEVIR-MCI --cache-dir /ssd2/lixiang/rs/Change-Agent/dataset --local-dir-use-symlinks False

# 若遇到 huggingface_hub.utils._errors.LocalEntryNotFoundError这个问题:https://blog.csdn.net/weixin_44257107/article/details/136532423

 

也就是,preprocess_data.py中的 DATA_PATH_ROOT = '/ssd2/lixiang/rs/Change-Agent/dataset'


数据集弄好之后 是训练

python train.py --train_goal 2 --data_folder /ssd2/lixiang/rs/Change-Agent/dataset/Levir-MCI-dataset/images --savepath ./models_ckpt/

不想搞了 先发布文章吧、、以后再看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值