在rd调研用的机器上找找有没有比较基础的镜像
iregistry.baidu-int.com/easydata-privatization/easydata-python-base ubuntu2004-py39-2.2.0-202503281110 a0f288c81c38 5 weeks ago 1.56GB
感觉这个看起来很基础,那直接起容器吧。不行,点进去发现是bml用户,估计比较麻烦。
那还是用上次llava的镜像吧。
docker run --name change-agent \
--net=host \
--privileged \
--cap-add=SYS_PTRACE --shm-size 5g \
--gpus all \
-v /ssd2/lixiang/rs:/ssd2/lixiang/rs \
-itd \
vkashyap10/llava-next:latest /bin/bash
按照github的指引配好了环境,其中torch==2.0.1+cu118这一步不行,就去torch官网(Previous PyTorch Versions | PyTorch)找了命令
装好环境后,下载数据集。
https://huggingface.co/datasets/lcybuaa/LEVIR-MCI/tree/main
额这个块引用的东西 废弃 没用上,用的下面的
使用
datasets
库下载数据集安装库:
首先,确保你安装了datasets
库。你可以通过 pip 安装:pip install datasets
加载数据集:
使用datasets
库中的load_dataset
函数可以轻松下载和加载数据集。from datasets import load_dataset # 替换 'dataset_name' 为你想要下载的数据集名称 dataset = load_dataset('dataset_name') # 示例:下载 'imdb' 数据集 imdb_dataset = load_dataset('imdb')
下载到这个目录:/ssd2/lixiang/rs/Change-Agent/dataset
# 下载数据集 # 这种方式,数据集会保存到"/本地路径"中 huggingface-cli download --repo-type dataset --token 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 --resume-download lcybuaa/LEVIR-MCI --cache-dir /ssd2/lixiang/rs/Change-Agent/dataset --local-dir-use-symlinks False # 若遇到 huggingface_hub.utils._errors.LocalEntryNotFoundError这个问题:https://blog.csdn.net/weixin_44257107/article/details/136532423
也就是,preprocess_data.py中的 DATA_PATH_ROOT = '/ssd2/lixiang/rs/Change-Agent/dataset'
数据集弄好之后 是训练
python train.py --train_goal 2 --data_folder /ssd2/lixiang/rs/Change-Agent/dataset/Levir-MCI-dataset/images --savepath ./models_ckpt/
不想搞了 先发布文章吧、、以后再看