(三)Yolov8的NCNN模型导出与关键点检测任务部署

(三)Yolov8的NCNN模型导出与部署


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


1.yolov8导出ncnn模型

1).ultralytics直接导出ncnn模型

from ultralytics import YOLO

# Create a model
model = YOLO('/xx/data/code/ultralytics/yolov8n-pose.pt')

# Export the model to NCNN with arguments
model.export(format='ncnn', half=True, imgsz=480)

执行上面的代码,会在当前路径创建yolov8n-pose_ncnn_model文件夹:

.
├── metadata.yaml
├── model.ncnn.bin
├── model.ncnn.param
└── model_ncnn.py

model_ncnn.pyncnn模型推理的测试文件,可以直接执行测试导出的模型是否能正常工作。

不过ultralytics是使用pnnx导出的ncnn模型,使用c++导入,

auto net_ = std::make_unique<ncnn::Net>();
assert(net_->load_param(param_file) == 0);
assert(net_->load_model(bin_file) == 0);

2).ultralytics导出onnx模型再转ncnn模型

step1:ultralytics导出onnx模型

from ultralytics import YOLO

# Create a model
model = YOLO('/xx/data/code/ultralytics/yolov8n-pose.pt')

# Export the model to NCNN with arguments
model.export(format='ncnn', half=True, imgsz=480
### 部署YOLOv8Seg模型NCNN的指南 将YOLOv8Seg模型部署NCNN涉及多个步骤,包括模型换、优化以及适配目标硬件环境。以下是关于此过程的关键点: #### 1. 准备YOLOv8Seg模型 在开始之前,需确保已训练好YOLOv8Seg模型并保存为PyTorch权重文件(通常是`.pt`格式)。这是后续换的基础[^3]。 #### 2. 模型至ONNX格式 NCNN支持多种输入格式,其中ONNX是最常用的中间表示形式之一。可以使用以下Python脚本将YOLOv8Seg模型导出为ONNX格式: ```python from ultralytics import YOLO model = YOLO('path_to_your_model.pt') # 加载YOLOv8Seg模型 model.export(format='onnx', simplify=True) # 导出为简化后的ONNX模型 ``` 上述代码会生成一个名为`model.onnx`的文件,该文件将是下一步的重要资源[^1]。 #### 3. 将ONNX模型换为NCNN参数文件 利用NCNN工具链中的`ncnn-tools`,可进一步将ONNX模型换为NCNN所需的两个主要文件——`.param`和`.bin`。具体命令如下: ```bash ./onnx2ncnn model.onnx model.param model.bin ``` 这一步骤完成后,即可获得适用于NCNN框架的目标模型文件[^4]。 #### 4. 实现推理逻辑 完成模型换后,在实际应用中需要编写C++代码来加载这些文件并执行预测操作。下面是一个简单的示例程序片段: ```cpp #include "net.h" using namespace ncnn; int main() { Net yolov8_seg; yolov8_seg.load_param("model.param"); yolov8_seg.load_model("model.bin"); Mat img = imread("test.jpg"); // 替换为目标图像路径 // 添加预处理推理部分... } ``` 注意:由于YOLOv8Seg属于分割网络,因此可能还需要额外实现掩码解码等功能以满足特定需求[^5]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值