题目描述
二货小易有一个W*H的网格盒子,网格的行编号为0H-1,网格的列编号为0W-1。每个格子至多可以放一 块蛋糕,任意两块蛋糕的欧几里得距离不能等于2。
对于两个格子坐标(x1,y1),(x2,y2)的欧几里得距离为:( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) 的算术平方根,小易想知道最多可以放多少块蛋糕在网格盒子里。
输入描述: 每组数组包含网格长宽W,H,用空格分割.(1 ≤ W、H ≤ 1000)
输出描述: 输出一个最多可以放的蛋糕数
示例
输入 3 2
输出 4
解题思路
思路一:
我们先来说一种很好理解的方法,但是代码稍微有点复杂,我们先来分析一下这个欧几里得距离的公式,我们可以发现其实他可以改写成(X1 - X2)的平方加上(Y1-Y2)的平方,不难发现其实就是两个位置之间的距离的平方
如果(x1,y1)放了蛋糕,则满足 ( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) == 4的(x2,y2)不能放蛋糕。
( (x1-x2) * (x1-x2) + (y1-y2) * (y1-y2) ) == 4看起来是一个无解的表达式。
但是可以进行加法表达式分解:
1+3=4
3+1=4
2+2=4
0+4=4
4+0=4
但是我们知道放蛋糕的格子的位置肯定是整数,所以要么就是X1 - X2 = 2,要么就是Y1 - Y2 = 2,讲到这相信很多人就可以理解了。
那么我们不妨假设所有格子都可以放蛋糕,然后遍历这个二维数组(网格可以看做一个二维数组),如果某个位置能放蛋糕,遍历一个是1的位置,就++count,再计算出若是该位子能放蛋糕,哪些位置不能放,将不能放的位置置为0,最后输出count就是能放蛋糕的总数。
思路二:
这种解法相较前一种要更难理解一点,但是,代码实现起来要简单很多
我们将行和列分为以下三种情况来处理:
1.行能整除4,或者列能整除4
2.行和列都是偶数
3 其他情况可一并处理
完整代码
思路一 距离
#include<iostream>
#include<vector>
using namespace std;
int main()
{
int w, h, res = 0;
cin >> w >> h;
vector<vector<int>> a;
a.resize(w);
for (auto& e : a)
e.resize(h, 1);
for (int i = 0; i<w; i++)
{
for (int j = 0; j<h; j++)
{
if (a[i][j] == 1)
{
res++;
// 标记不能放蛋糕的位置
if ((i + 2)<w)
a[i + 2][j] = 0;
if ((j + 2)<h)
a[i][j + 2] = 0;
}
}
}
cout << res;
return 0;
}
思路二 图解
#include <iostream>
#include <vector>
using namespace std;
int main(){
int W, H, i, j, counts = 0;
cin >> W >> H;
if (W % 4 == 0 || H % 4 == 0){
counts = W * H / 2;
}
else if (W % 2 == 0 && H % 2 == 0){
counts = (W * H / 4 + 1) * 2;
}
else{
counts = W * H / 2 + 1;
}
cout << counts << endl;
return 0;
}
原题链接
https://www.nowcoder.com/practice/1183548cd48446b38da501e58d5944eb?tpId=85&&tqId=29840&rp=1&ru=/activity/oj&qru=/ta/2017test/question-ranking