题目:
一个数组有 N 个元素,求连续子数组的最大和。 例如:[-1,2,1],和最大的连续子数组为[2,1],其和为 3
输入描述:
输入为两行。 第一行一个整数n(1 <= n <= 100000),表示一共有n个元素 第二行为n个数,即每个元素,每个整数都在32位int范围内。以空格分隔。
输出描述:
所有连续子数组中和最大的值。
分析:
方法(1):动态规划
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int max_subseq(vector<int>& v)
{
if(v.empty())
return 0;
//v[i]是以i结尾的最大连续子序列的和
int s=v[0];
int m=v[0];
for(int i=1;i<v.size();i++)
{
s=max(s+v[i], v[i]);
m=max(m, s);
}
return m;
}
int main()
{
int n;
while(cin>>n)
{
vector<int> v(n);
for(int i=0;i<n;i++)
{
cin>>v[i];
}
cout<<max_subseq(v)<<endl;
}
return 0;
}
方法(2):之前的和sum>0即对最大和有贡献就累加,否则将sum更新为当前值。
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
int max_subseq(vector<int>& v)
{
if(v.empty())
return 0;
//v[i]是以i结尾的最大连续子序列的和
int sum=v[0];
int max=v[0];
for(int i=1;i<v.size();i++)
{
if(sum>0)//之前的有贡献
{
sum+=v[i];
}
else
{
sum=v[i];
}
if(sum>max)
max=sum;
}
return max;
}
int main()
{
int n;
while(cin>>n)
{
vector<int> v(n);
for(int i=0;i<n;i++)
{
cin>>v[i];
}
cout<<max_subseq(v)<<endl;
}
return 0;
}