剑指 Offer 56 - I. 数组中数字出现的次数

本文介绍了一个整型数组中找出仅出现一次的两个数字的算法,要求时间复杂度O(n),空间复杂度O(1)。通过逻辑异或运算和分组策略,详细解析了如何高效解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

剑指 Offer 56 - I. 数组中数字出现的次数

题目描述

一个整型数组 nums 里除两个数字之外,其他数字都出现了两次。请写程序找出这两个只出现一次的数字。要求时间复杂度是 O ( n ) O(n) O(n),空间复杂度是 O ( 1 ) O(1) O(1)

示例1:

输入:nums = [4,1,4,6]
输出:[1,6] 或 [6,1]

示例2:

输入:nums = [1,2,10,4,1,4,3,3]
输出:[2,10] 或 [10,2]

限制:

2 <= nums.length <= 10000

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zu-zhong-shu-zi-chu-xian-de-ci-shu-lcof

代码实现

class Solution {
public:
    vector<int> singleNumbers(vector<int>& nums) {
        int diff = 0;
        for(auto nt = nums.begin(); nt != nums.end(); nt++) 
            diff ^= (*nt);
        int flag = diff & (-diff);
        vector<int> result(2, 0);
        for(auto nt = nums.begin(); nt != nums.end(); nt++) {
            if((*nt) & flag)
                result[0] ^= (*nt);
            else
                result[1] ^= (*nt);
        }
        return result;
    }
};

思路解析

  • 题目的重点是要时间复杂度 O ( n ) O(n) O(n),空间复杂度 O ( 1 ) O(1) O(1),考虑位运算的方式;
  • 基本的位运算逻辑:
    • 使用逻辑异或( ⊕ \oplus )来区分未成对出现的数字
      0 ⊕ 0 = 0 0 \oplus 0 = 0 00=0 0 ⊕ 1 = 1 0 \oplus 1 = 1 01=1
    • 逻辑异或( ⊕ \oplus )运算满足结合律和交换律;
      因此,对所有的数字进行异或运算,由于只有两个数字(假设为 a a a b b b)未重复出现,则异或运算的结果是 a ⊕ b a\oplus b ab
      a 1 ⊕ a 1 ⊕ a 2 ⊕ a 2 ⊕ ⋯ a n ⊕ a n ⊕ k = k a_1 \oplus a_1 \oplus a_2 \oplus a_2 \oplus \cdots a_n \oplus a_n \oplus k = k a1a1a2a2anank=k
  • 得到 a ⊕ b a\oplus b ab后,我们需要想一个办法来将nums分组,考虑所有的数字都可以用二进制表示,则可根据某一位是 0 0 0 1 1 1来对nums进行分组,且要保证 a a a b b b不在同组,采用的分组方式如下:
    • 在计算机中,整形数字采用补码的形式表示,正数的补码等于其原码,负数的补码等于其反码+1,以8位int类型为例:
      int s = 8,原码00000100,反码00000100,补码00000100
      int s =-8,原码10000100,反码11111011,补码11111100
    • 可知:s & (-s) = 00000100,仅有1位数字为 1 1 1s的最低位 1 1 1),且s本身的该位数字也为1,可利用这一特性,对原数组nums进行分类。
    • 如何确保 a a a b b b不在同一分组?
      已知 d = a ⊕ b d = a\oplus b d=ab,则 d d d的最低位 1 1 1一定可以区分 a a a b b b(异或运算的定义)
      则根据 d d d的某一位 1 1 1对原数组进行分组,必定可保证 a a a b b b不同组。
  • 分组之后的事情就简单了,由于异或运算满足结合律和交换律,且相同的数字一定被分在的同一组,而 a a a b b b不同组,对每一组分别进行异或运算,最后两组得到的结果就分别是 a a a b b b
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值