Task08:文本分类;数据增强;模型微调
文本分类
首先,数据集
处理数据
def read_imdb(folder='train', data_root="/home/kesci/input/IMDB2578/aclImdb_v1/aclImdb"):
data = []
for label in ['pos', 'neg']:
folder_name = os.path.join(data_root, folder, label)
for file in tqdm(os.listdir(folder_name)):
with open(os.path.join(folder_name, file), 'rb') as f:
review = f.read().decode('utf-8').replace('\n', '').lower()
data.append([review, 1 if label == 'pos' else 0])
random.shuffle(data)
return data
DATA_ROOT = "/home/kesci/input/IMDB2578/aclImdb_v1/"
data_root = os.path.join(DATA_ROOT, "aclImdb")
train_data, test_data = read_imdb('train', data_root), read_imdb('test', data_root)
# 打印训练数据中的前五个sample
for sample in train_data[:5]:
print(sample[1], '\t', sample[0][:50])
def get_tokenized_imdb(data):
'''
@params:
data: 数据的列表,列表中的每个元素为 [文本字符串,0/1标签] 二元组
@return: 切分词后的文本的列表,列表中的每个元素为切分后的词序列
'''
def tokenizer(text):
return [tok.lower() for tok in text.split(' ')]
return [tokenizer(review) for review, _ in data]
def get_vocab_imdb(data):
'''
@params:
data: 同上
@return: 数据集上的词典,Vocab 的实例(freqs, stoi, itos)
'''
tokenized_data = get_tokenized_imdb(data)
counter = collections.Counter([tk for st in tokenized_data for tk in st])
return Vocab.Vocab(counter, min_freq=5)
vocab = get_vocab_imdb(train_data)
print('# words in vocab:', len(vocab))
def get_tokenized_imdb(data):
'''
@params:
data: 数据的列表,列表中的每个元素为 [文本字符串,0/1标签] 二元组
@return: 切分词后的文本的列表,列表中的每个元素为切分后的词序列
'''
def