《ScribbleSup: Scribble-Supervised Convolutional Networks for Semantic Segmentation》笔记
for Semantic Segmentation》笔记)
学习笔记,如有谬误,还请不吝赐教!
解决的问题以及方法
弱监督的图像分割算法,用的是简单的区域标记(见图)来监督学习图像分割。不过解决方案就比较简单粗暴了,就是1.通过标记信息,利用grabcut的方法得到一个分割(所以这里就是一个能量函数的问题)。2.利用FCN来拟合分割。只不过这篇文章在训练(优化)的时候把这两步一起做了。(为啥呢?这和先grabcut再FCN有啥区别呢… 其实它实际做的时候也是1,2交替优化的…)
相关细节
主要就是优化一个损失函数
符号描述(这里用的是超像素x)
第一项:
意思就是超像素的分类如果和标记类相同,那就不惩罚;如果超像素没有被标记,那么这个超像素的类等可能的是这张图里出现的每个类;其他的都要给一个很大的惩罚…(这个正无穷是什么鬼啊!嗯… 应该是grabcut的方法不在乎梯度的问题,这里给一个足够大的值就可以…)附上原文