《From Image-level to Pixel-level Labeling with Convolutional Networks》笔记

这篇博客主要探讨了如何借助分类标签实现图像分割的弱监督方法。通过将CNN的分割结果转化为类标签,并利用平均或最大值策略处理像素级分类。文章指出直接求平均可能导致各像素权重相同的问题,而采用最大似然估计能改善这一状况。后续内容涉及进一步优化分割结果的传统方法,但博主并未深入阅读。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《From Image-level to Pixel-level Labeling with Convolutional Networks》笔记

学习笔记,如有谬误,还请不吝赐教!

解决的问题以及方法

用分类标签做图像分割的弱监督分割算法。所谓分割就是像素级的分类(应该说这只能是一种看法…)所以就是怎么把像素级的分类做成图像级的分类。最简单的想法就是取平均或者取最大值。

大致流程

在这里插入图片描述

相关细节

首先,将CNN的分割结果(就是掩码)转化成类标签,如下:
在这里插入图片描述
这里就是一个变相的求平均,为什么不直接求平均呢?文章说直接求平均相当于分割图上每一点对最终分类结果的权重都是一样的,这样是不好的。

然后,最大似然估计就可以:
在这里插入图片描述

后记

当然文章并没有结束,不过后面就是再结合传统方法来精修一下分割结果,但我就… 懒得看了(╯‵□′)╯︵┻━┻,虽然这不太好…

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值