《STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation》笔记

本文介绍了STC(Simple to Complex)框架在弱监督语义分割中的应用,首先从简单的背景和前景图像开始学习,逐步处理更复杂的图像。核心思想是生成可靠的掩模,用CNN进行拟合。文章详细阐述了Initial DCNN、Enhanced-DCNN和Powerful-DCNN三个阶段,其中Initial DCNN利用显著图生成初始分割,Enhanced-DCNN通过前一阶段结果改进,而Powerful-DCNN处理多标签图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《STC: A Simple to Complex Framework for Weakly-supervised Semantic Segmentation》笔记

学习笔记,如有谬误,还请不吝赐教!

解决的问题以及方法

Image level的弱监督分割算法,从简单的背景简单、前景单一图像学起,再学习复杂图像的过程。

框架及细节

在这里插入图片描述
主要的想法还是想方设法搞出比较靠谱的掩码,然后CNN拟合。

Initial DCNN

通过《Salient object detection: A discriminative regional feature integration approach》的方法得到显著图,通过交叉熵训练网络,标签就是归一化的显著图(不过他这里说是多分类交叉熵,但他又说对于简单的图像,就认为是只有一个类,所以这里其实就是一个两类的交叉熵,一个标签标记的前景,用显著图的归一化值做标签,一个是背景,就用1减掉)

Enhanced-DCNN

通过第一个网络得到大致分割的结果,通过图像标签选择对应类的掩码,监督训练。
在这里插入图片描述

Powerful-DCNN

和上一个的区别就是使用更复杂的图像,多标签的图像就在多个掩码中选择最大的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值