机器学习之sklearn基础教程(第三篇:模型选择和评估)
1. 模型选择
在机器学习任务中,选择合适的模型是非常重要的。不同的模型适用于不同的问题类型和数据特征。
在模型选择过程中,有几个常用的方法和原则:
-
K折交叉验证:使用训练集对模型进行训练,然后使用交叉验证将训练集划分为K个子集,进行多次模型训练和评估,最终选择表现最佳的模型。
-
留一法交叉验证:是K折交叉验证的一种特殊情况,当K等于样本数时使用。对于小样本数据集,留一法交叉验证可能更合适,但计算成本较高。
-
留出法交叉验证:将一部分数据作为训练集,留出一部分作为测试集。这种方法适用于数据集较大的情况,其中测试集应该尽量保持与真实数据分布相似。
-
自助法:从原始数据集中有放回地选取样本来构建多个训练集,然后对每个训练集进行模型训练和评估。这种方法适用于数据集较小的情况,但会产生一些重复样本。
-
网格搜索和交叉验证结合:通过网格搜索优化模型的超参数,同时使用交叉验证进行模型评估,以得到最佳的模型超参数组合。
from sklearn.model_selection import GridSearchCV
# 定义超参数的候选值
param_grid = {
'n_neighbors': [3, 5, 7]