
自然语言处理
文章平均质量分 75
李卓璐
随便记记啦
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
手把手教你如何编写预训练垃圾短信识别模型代码(基于nlp,pytorch框架,huggingface实现)
解决方法就是加载模型时进行模型限定,这也呼应上前文说的,你可以先进行模型的引用然后跳到模型本身里面查找问题,这里其实是由于数据处理阶段没有将label的类别转换成int,因此及时限定了模型进行二分类也走的BCE二元交叉熵损失,BCE是需要遵守输入尺度和模型输出尺度匹配的,因此出现述该问题。模型的下载需要手动去huggingface官网下载,请注意此处的模型保存和上述模型保存至本地不同,上面保存是为了使得模型自动适应/匹配AutoTokenizer,而这里则是保存模型的权重文件。预训练后所生成的文件夹。原创 2025-03-01 20:32:52 · 1273 阅读 · 0 评论 -
Huggingface加载数据集并保存至本地
这里挑选数据集可以多加附加项,这样数据集更贴合我们自身所需任务。原创 2025-02-14 15:56:49 · 392 阅读 · 0 评论 -
Huggingface加载Q&A任务网络且保存至本地
attention_mask和padding是配套使用的,当人为去修改padding的时候,也要把attention_mask里面的参数进行修改。2)attention_mask:为1的表示可以跟谁算,为0的不会参与到self-attention的进一步计算。那上述的两种代码中都是使用了自动分词器选择,它是由checkpoint指定的预训练模型关联的,不用我们自己选择tokenizer,它自动帮我们选择好了。这样就将下图的文件保存至所想要保存的文件夹中,后续可以实现模型本地加载,离线运行,不用挂梯子了。原创 2025-02-15 10:46:54 · 621 阅读 · 0 评论