
神经网络
文章平均质量分 96
搏博
我爱学习!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
PyTorch实现CNN用于MNIST手写数字识别任务的python完整代码
数据集中的图像经过标准化处理,背景为黑色,数字前景为白色,像素值范围为0-255(通常会归一化至0-1),格式简洁且易于处理,常被用作深度学习入门的“Hello World”级示例(如CNN模型的基础测试),也是评估分类算法性能的基准数据集之一,在PyTorch、TensorFlow等框架中可直接加载调用,适合用于演示数据预处理、模型训练和推理的全流程。MNIST数据集的均值和标准差是预计算好的全局统计量。在第一次卷积操作中,输入是1通道的28×28图像,输出变为16通道的28×28特征图。原创 2025-05-26 23:33:34 · 1579 阅读 · 32 评论 -
时空注意力机制深度解析:理论、技术与应用全景
本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解时空注意力机制的核心原理,涵盖基础理论推导、改进模型分析、分布式训练技术及多领域实践案例,为复杂时空系统的建模提供完整技术路线。未来,随着理论的完善和技术的融合,时空注意力机制将在自动驾驶、智慧城市、气象预测等领域发挥更大作用,推动人工智能从感知智能向决策智能迈进。在机器学习中,自注意力机制通过计算输入数据与模型内部组件的相似度,来决定哪些信息对当前任务更重要。,计算注意力汇聚汇聚的输出计算成为值的加权和,其中a表示注意力评分函数。原创 2025-05-12 23:44:37 · 2221 阅读 · 23 评论 -
生成对抗网络(GAN)深度解析:理论、技术与应用全景
从理论推导到工程实现,GAN的发展印证了深度学习中“对抗训练”范式的有效性——通过构建竞争机制,模型能够学习到更复杂、更真实的数据分布。(Discriminator)负责判断输入的数据是真实的还是生成的,目的是找出生成器做的“假数据”。本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解GAN的核心机制,涵盖基础理论推导、改进模型分析、评估指标设计及多领域实践案例,为复杂分布建模提供完整技术路线。之后将D(x)和D(G(z))都输入到判别模型(D)中,进行判别,判断是否是真是的数据。原创 2025-05-12 21:37:35 · 2895 阅读 · 0 评论 -
长短期记忆网络(LSTM)深度解析:理论、技术与应用全景
本文从理论起源、数学建模、网络架构、工程实现到行业应用,系统拆解LSTM的核心机制,涵盖基础理论推导、改进模型分析、分布式训练技术及多领域实践案例,为复杂时序系统的建模提供完整技术路线。通过共享权重处理序列数据,但反向传播时梯度呈现指数级衰减(或爆炸),导致对长距离依赖(如超过20步的时序)建模能力失效,即梯度消失问题。从连续语音信号中检测语音段起始与结束位置,输入为梅尔频率倒谱系数(MFCC,40维),输出为二分类(语音/非语音)。原创 2025-05-11 00:05:59 · 2306 阅读 · 5 评论 -
神经网络在模式识别中的应用:从语音到视觉的智能解析
从实验室的算法验证到工业界的大规模部署,从单一模态识别到多模态融合分析,这一领域的进步不仅推动着人工智能的实用化,更深刻改变着人类与机器交互的方式 —— 让机器“看懂”“听懂”世界,最终实现更智能的人机协同。通过一阶高通滤波器(公式:y(t) = x(t) - αx(t-1),α通常取0.97)增强高频分量,弥补声音传播中的高频衰减,提升辅音等高频信息的区分度。其中 x_i^a 为锚样本,x_i^p 为正样本(同身份),x_i^n 为负样本(不同身份),α为间隔 margin。原创 2025-05-07 12:34:05 · 1153 阅读 · 1 评论 -
神经网络在专家系统中的应用:从符号逻辑到连接主义的融合创新
目前在专家系统中广泛应用的知识表示形式有产生式规则、语义网络、谓词逻辑、框架和面向对象方法等,虽然它们各自以不同的结构和组织形式描述知识,但都是把知识转换成计算机可以存储的形式存入知识库的,推理时再依一定的匹配算法及搜索策略到知识库中去寻找所需的知识。(4)不具有联想记忆功能。目前,一般专家系统只能应用于相当窄的知识领域内,求解预定的专门问题,一旦遇到超出知识范围的问题,就无能为力,不能通过自身的学习增长知识,存在所谓的窄台阶问题。其实,这两方面的研究都各有所长,也各有所短,分别反映了人类智能的一个方面。原创 2025-05-05 21:29:38 · 1620 阅读 · 1 评论 -
神经网络模型深度解析——从线性分类到动态记忆的理论与实践
所谓一个网络是稳定的,是指从某一时刻开始,网络的状态不再改变。前面讨论的两种模型都是前向神经网络,从输出层至输人层无反馈,这就不会使网络的输出陷人从一个状态到另一个状态的无限转换中,因而人们对它的研究着重是学习方法的研究,而较少关心网络的稳定性。单层感知器只有一个计算层,它以信号模板作为输人,经计算后汇总输出,层内无互连,从输出至输人无反馈,是一种典型的前向网络,如图2所示。然后,以其输出与样例的期望输出进行比较,如果它们的误差不能满足要求,则沿着原来的连接通路逐层返回,并利用两者的误差按一定的原则。原创 2025-05-04 14:38:25 · 985 阅读 · 2 评论 -
神经网络的基本概念与深度解析——基于生物机制的仿生建模与工程实现
在无反馈的前向网络中,信息一旦通过某个神经元,过程就结束了,而在该网络中,信息可以在神经元之间反复往返地传递,网络一直处在一种改变状态的动态变化之中。θ为该神经元的阈值;人们在极短的时间内就可以对外界事物作出判断和决策,而且还具有很强的容错性及自适应能力,善于联想、类比、归纳和推广,能不断地学习新事物、新知识,总结经验,吸取教训,适应不断变化的情况等。在每一神经元中,信息都是以预知的确定方向流动的,即从神经元的接收信息部分(细胞体、树突)传到轴突的起始部分,再传到轴突终端的突触,最后再传递给另一神经元。原创 2025-05-04 00:05:43 · 1661 阅读 · 1 评论