大数据实战之HDFS单机配置

本文档介绍了如何配置HDFS,包括编辑core-site.xml设置`fs.defaultFS`和`hadoop.tmp.dir`,以及如何格式化和启动NameNode和DataNode。在启动过程中遇到DataNode因端口冲突无法启动的问题,通过检查日志发现是由于localhost端口被占用。解决方法是取消/etc/hosts中localhost的注释,成功启动DataNode。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

如果读者是刚接触大数据,那么在阅读本章前,请先阅读下上一篇文章《前戏》会比较容易理解。本章主要讲解如何配置HDFS。

编辑core-site.xml

我编辑的路径是在/home/kfk/hadoop-2.8.0/etc/hadoop/core-site.xml


fs.defaultFS
hdfs://bigdata-pro01.kfk.com:9050


hadoop.tmp.dir
/home/kfk/hadoop-2.8.0/data/tmp

fs.defalultFS

这个是用来配置是否配置为分布式的文件系统。hdfs://用来指明是分布式系统,bigdata-pro01.kfk.com是主机名,9050是端口号,默认是9000,但由于9000和我的python使用的端口冲突了,所以我将9000改成了9050。使用端口的原则不与其他进程冲突。

hadoop.tmp.dir

这个配置临时目录,建议是放到kfk用户的目录下。

格式化

/home/kfk/hadoop-2.8.0/bin/hdfs namenode -format

namenode启动

/home/kfk/hadoop-2.8.0/sbin/

<think>好的,用户需要关于Hadoop和Spark在大数据处理方面的实战分析资料,比如教程和案例。首先,我得确认用户的具体需求是什么。可能他们正在处理大数据项目,需要实际的指导。Hadoop和Spark都是大数据处理的核心工具,但各有侧重。HadoopHDFS适合分布式存储,而MapReduce用于批处理。Spark则以内存计算见长,适合迭代任务,比如机器学习和实时处理。 接下来,我要检查已有的引用资料。引用[1]提到用Spark进行数据读取、清洗、预处理和分析,引用[2]解释了Hadoop的基础架构,引用[3]和[4]提供了实战书籍的章节内容,包括Hadoop单节点集群的测试和Spark RDD的操作。这些引用应该能帮助用户找到需要的实战案例。 用户可能需要的不仅仅是资料推荐,还有具体的应用场景和操作步骤。比如,如何结合Hadoop和Spark,或者如何处理实际的数据分析任务。根据引用[3]和[4],实战书籍里有整合开发和RDD操作的实例,这对用户来说应该很有用。此外,引用[1]中的Spark SQL和数据仓库应用也是一个关键点,可以指导用户进行数据查询和整合分析。 可能需要生成相关问题,引导用户深入思考。例如,如何搭建Hadoop和Spark环境,或者优化性能的方法。另外,用户可能对实际案例中的数据处理流程感兴趣,比如日志分析或推荐系统,这些都可以从引用中找到相关案例。 最后,确保回答结构清晰,分点列出参考资料和实战案例,帮助用户逐步解决问题。同时,提醒用户注意版本兼容性,比如Hadoop和Spark的版本匹配,避免环境配置问题。总结来说,用户需要的是结合理论和实践的指导,引用提供的书籍和章节正好能满足这一点。</think>### Hadoop与Spark大数据实战分析资料推荐 #### 一、核心参考资料推荐 1. **《Hadoop+Spark大数据巨量分析与机器学习整合开发实战》** - 包含Hadoop单节点集群搭建(基于Debian系统)和Spark RDD弹性分布式数据集操作[^3] - 实战案例覆盖数据存储、清洗、MapReduce计算和机器学习模型部署 - 第9章重点讲解Spark RDD的转换与行动操作(如`map`, `reduceByKey`),第10章演示IDE环境下的WordCount案例[^4] 2. **Apache官方文档** - Hadoop HDFS文件系统管理与MapReduce编程范式[^2] - Spark SQL结构化数据处理(如`DataFrame`操作)与流式计算(Spark Streaming)[^1] #### 二、典型实战场景与案例 1. **日志分析系统** - 使用Hadoop存储TB级日志数据,通过Spark进行实时聚合分析(例如用户行为模式挖掘) - 技术栈示例: ```scala val logRDD = sc.textFile("hdfs://path/to/logs") val errorCount = logRDD.filter(_.contains("ERROR")).count() ``` 2. **推荐系统数据预处理** - 基于Spark MLlib实现协同过滤算法,结合Hadoop存储用户画像数据 - 关键步骤:特征工程$\rightarrow$模型训练$\rightarrow$结果存储到HBase 3. **金融风控实时计算** - 使用Spark Streaming处理Kafka流式数据,Hadoop归档历史交易记录 - 实现异常交易检测(如滑动窗口统计:$$ \sum_{t=T-5}^{T} \text{TransactionAmount}_t > \text{Threshold} $$) #### 三、环境搭建建议 1. **单机伪分布式环境** - Hadoop 3.x + Spark 3.x + JDK 11(兼容性需验证) - 配置示例: ```xml <!-- core-site.xml --> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:9000</value> </property> ``` 2. **集群部署要点** - 数据本地化优化:HDFS块大小设置为128MB - Spark资源分配策略:`spark.executor.memory`与`spark.driver.memory`比例建议2:1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醉心编码

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值