在PyTorch中,Tensor(张量)是一个多维数组,可以用于存储和操作数据。它类似于Numpy数组,但具有GPU加速和自动求导等功能。
张量有不同的维度,可以是0维(标量)、1维(向量)、2维(矩阵)或更高维。例如,一个0维张量被称为标量,它有一个元素。一个1维张量被称为向量,它有一个轴和多个元素。一个2维张量被称为矩阵,它有两个轴(行和列)和多个元素。以此类推,一个更高维的张量有多个轴和多个元素。
每个张量都有一个数据类型,例如浮点型(float)、整型(int)、布尔型(bool)等。在PyTorch中,常用的数据类型有torch.float32,torch.float64,torch.int32,torch.int64等。
Tensor基础
Tensor(张量) 是PyTorch中用于表示多维数据的主要数据结构,类似于多维数组,可以存储和操作数字数据。
1.1、Tensor的维度(Dimensions)
Tensor的维度可以理解为Tensor包含的数据在不同方向上的层次或级别。在数学和计算机科学中,维度通常用来描述数据结构的复杂性或者数据在空间中的方向。对于Tensor来说,每一个维度都代表了数据的一个特定的方向或特性。
Tensor(张量)的维度(Dimensions)是指张量的轴数或阶数。可以类似用坐标轴来理解,可以类比的用坐标轴理解,即Tensor有多少个方向。比如1维,x轴只有一个方向;2维,x轴y轴,两个方向,x轴固定长度;3维,x轴y轴z轴,三个方向,x轴和y轴固定长度。
基本的tensor创建方法:
import torch
x=torch.tensor(data)#利用data创建tensor,data可以是各总维度的列表,或一个常数
下面就让我们来举例说明
0维Tensor:也就是一个标量(Scalar),它没有维度,仅仅是一个单一的数值。例如,温度值、价格或者某个计数。
举例说明:torch.tensor(1)、 torch.tensor(2)
**1维Tensor:**也称作向量(Vector),它有一个维度,可以看作是一系列数值的集合。例如,一维数组 [1, 2, 3] 代表一系列数值或某个特性的不同测量值