Deep Leaning 学习笔记之改善神经网络的超参数(3.1)—— 超参数调试

1 优化过程

本期我们学习的两个主要内容是 使用随机取样 而不是在网格中定点搜索 或者使用区域定位的搜索过程 但是除此以外 还有很多超参数探寻的方法

1.1 随机抽样

如果你有两个超参数 假设是超参数1和超参数2 人们经常会像这样 在一个网格中对点进行取样 然后系统化地尝试这些点所代表的值
在这里插入图片描述

1.2 区域定位搜索

比如在这个二维的例子中 你抽取了这些点 也许你发现这个点能产生最好的结果 并且旁边的一些点的结果也不错 那么在这个方案中 你需要做的是对 这些点所在的区域进行限定 然后在这个区域内进行密度更高的抽样 或者依然选择随机抽样 但是需要把更多资源集中在这个蓝色方块中搜索

在这里插入图片描述

2 随机均匀取样

2.1

  • α∈(10a,10b10^a,10^b1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值