乘法逆元计算

乘法逆元计算

乘法逆元(模运算和环的概念不在此介绍):

乘法中存在中性元素1,即对每个 a ∈ Z(m),都有 a * 1 ≡ a mod m。
不是所有元素都存在乘法逆元。假设 a ∈ Z,乘法逆元 a^(-1) 可以定义为:
a * a^(-1) ≡ 1 mod m
如果元素 a 的乘法逆元存在,则可以除以这个元素,因为 b / a ≡ b * a(-1) mod m。
当且仅当 gcd(a, m)= 1,一个元素的 a ∈ Z 存在乘法逆元 a^(-1)。其中 gcd 表示最大公约数;如果 gcd(a, m)= 1,那么 a 和 m 就互质或互素。

乘法逆元的一大应用是模意义下的除法,除法在模意义下并不是封闭的,但我们可以根据上述公式,将其转化为乘法。
乘法逆元

常见的乘法逆元计算方法:

1.费马小定理
2.扩展欧几里得
3.递推法

实现乘法逆元的计算,大多需要借助计算机程序;
在此只介绍数比较小时的笔算方法。

思路就是:

a 模 b 的乘法逆元 推导为 1 = ax - by 或者 1 = by - ax
a的乘法逆元a(-1) = x 或 a(-1) = b - x

11模26的乘法逆元:
26 = 11 * 2 + 4;11 = 4 * 2 + 3;4 = 3 + 1
1 = 4 - 3
1 = (26 - 11*2) - (11 - 4*2)
1 = (26 - 11*2) - (11 - (26 - 11*2)*2)
1 = 26*3 - 11*7
所以11模26的乘法逆元为26 - 7 = 19 。

21模26的乘法逆元:
26 = 21 + 5;21 = 5 * 4 + 1
1 = 21 - 5*4
1 = 21 - (26 - 21)*4
1 = 21*5 - 26*4
所以21模26的乘法逆元为 5 。

### 乘法逆元的定义 在模运算中,给定一个整数 $ a $ 和一个模数 $ p $,如果存在一个整数 $ x $ 满足 $ ax \equiv 1 \pmod{p} $,那么 $ x $ 被称为 $ a $ 在模 $ p $ 下的乘法逆元乘法逆元存在的条件是 $ a $ 与 $ p $ 互质,即 $ \gcd(a, p) = 1 $。 ### 计算乘法逆元的方法 #### 扩展欧几里得算法 扩展欧几里得算法(exgcd)是一种适用于单个查找或者模 $ p $ 很大的情况下,即使 $ p $ 不是质数也可以使用的方法。该算法可以用来求解线性方程 $ ax + by = \gcd(a, b) $ 的整数解。当 $ a $ 和 $ b $ 互质时,可以通过此方法找到 $ a $ 在模 $ b $ 下的逆元。下面是一个使用扩展欧几里得算法来求解乘法逆元的 C++ 函数示例: ```cpp int extgcd(int a, int b, int &x, int &y) { int c = a; if (b == 0) { x = 1; y = 0; } else { c = extgcd(b, a % b, y, x); y -= (a / b) * x; } return c; } ``` #### 快速幂算法 快速幂算法是一种可以在 $ O(\log n) $ 的时间复杂度内计算 $ a^n \mod p $ 的方法。当模数 $ p $ 是一个质数时,可以利用费马小定理,即对于任意整数 $ a $,如果 $ a $ 不是 $ p $ 的倍数,则有 $ a^{p-1} \equiv 1 \pmod{p} $。由此可以得出 $ a $ 的逆元为 $ a^{p-2} \mod p $。下面是一个使用快速幂算法来求解乘法逆元的 C++ 函数示例: ```cpp int fast_power(int a, int n, int p) { int result = 1; while (n > 0) { if (n % 2 == 1) { result = (long long)result * a % p; } a = (long long)a * a % p; n /= 2; } return result; } ``` #### 线性求逆元 线性求逆元的方法适用于求一系列数字在模 $ p $ 下的逆元,时间复杂度为 $ O(n) $。这种方法通常用于预处理阶段,以便快速获取多个数的逆元。具体实现取决于具体的应用场景和需求。 #### 阶乘逆元 阶乘逆元同样适用于模数为质数的情况,并且可以在 $ O(n) $ 的时间内完成计算。这种方法通常用于组合数学中的问题,例如计算组合数 $ C(n, k) \mod p $。 ### 应用实例 考虑洛谷 P3811 题目中的情况,给定 $ n $ 和 $ p $,要求输出 $ 1 $ 到 $ n $ 中每个整数在模 $ p $ 意义下的乘法逆元。由于题目保证 $ p $ 是质数,因此可以使用快速幂算法来求解每个数的逆元。此外,对于需要频繁进行除法运算的情况,可以通过预先计算出所有需要的逆元来简化后续的计算过程。例如,在计算 $ (a / b) \mod p $ 时,可以将其转换为 $ (a \cdot b^{-1}) \mod p $,其中 $ b^{-1} $ 是 $ b $ 在模 $ p $ 下的逆元 [^3]。 ### 注意事项 - 在使用扩展欧几里得算法时,需要注意处理边界情况,例如当 $ a $ 或 $ b $ 为零的情况。 - 使用快速幂算法时,要确保幂运算的结果不会溢出,这通常通过取模操作来实现。 - 当模数 $ p $ 不是质数时,不能直接应用费马小定理来求解逆元,此时需要使用其他方法,如扩展欧几里得算法。 - 在实际应用中,选择合适的方法取决于具体的需求,比如模数的大小、是否为质数以及需要求解逆元的数量等因素。 ### 相关问题 1. 如何在模数不是质数的情况下求解乘法逆元? 2. 快速幂算法除了用于求解乘法逆元外还有哪些应用场景? 3. 在什么情况下应该优先考虑使用线性求逆元而不是快速幂算法? 4. 阶乘逆元计算方法与普通乘法逆元有何不同? 5. 当模数 $ p $ 是合数时,是否有可能存在乘法逆元?如果有的话,如何求解?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值