常用的标准正态分布分位数取值

本文通过一个具体实例讲解了如何使用标准正态分布的分位数来解决实际问题,例如确定公共汽车车门的高度,确保不超过0.01概率的男子会与车门顶头碰头。文中详细解释了计算过程,并展示了如何利用Matlab的逆分布命令快速求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本博文源于《商务统计》,旨在讲述常用的标准正态分布的分位数取值,matlab和spss也比较常用这些分位数取值,如果感兴趣的同学收藏即可。

在这里插入图片描述

例子:公共汽车车门的高度是按男子与车门顶头碰头机会在0.01以下来设计,设男子身高X~N(170,6^2),问车门高度应如何确定

破解题目

在这里插入图片描述
图中X服从正态分布,h不超过0.01,根据u0.01=2.33,所以计算公式就变成标准化的一个步骤

在这里插入图片描述
答案为183.98,即高度为184厘米

如果用matlab计算这种题目的时候,只需要一个逆分布命令即可,命令如下:

>> norminv(0.99,170,6)

ans =

  183.9581
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值