yolo数据集汇总目录,yolov5/yolov8/yolo11目标检测实战源码案例汇总目录【附下载链接】【持续更新中】

在这里插入图片描述

该链接的数据集都经过本人训练测试并运行成功,功能都OK的情况下才上传的,请放心下载使用!,也可直接用于毕设、课设和作业等。有问题请私信我,谢谢。

以下是数据集的汇总目录,有需要可直接点击进入即可:

1、yolov5/yolov8/yolo11/yolo目标检测数据集,轴承外观缺陷检测数据集,1000多张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

2、yolov5/yolov8/yolo11/yolo目标检测数据集,学生课堂行为检测数据集,2000多张标注好的数据集(6类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

3、yolov5/yolov8/yolo11/yolo目标检测数据集,眼镜检测数据集,1500多张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

4、yolov5/yolov8/yolo11/yolo目标检测数据集,西红柿成熟度检测数据集,288张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

5、yolov5/yolov8/yolo11/yolo目标检测数据集,水下垃圾检测数据集,7700张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

6、yolov5/yolov8/yolo11/yolo目标检测数据集,摔倒检测数据集,1000张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

7、yolov5/yolov8/yolo11/yolo目标检测数据集,数字检测数据集,3700张标注好的数据集(13类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

8、yolov5/yolov8/yolo11/yolo目标检测数据集,输电线路绝缘子缺陷检测数据集,236张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

9、yolov5/yolov8/yolo11/yolo目标检测数据集,手势识别检测数据集,300多张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

10、yolov5/yolov8/yolo11/yolo目标检测数据集,面部表情检测数据集,25200多张标注好的数据集(8类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

11、yolov5/yolov8/yolo11/yolo目标检测数据集,垃圾分类检测数据集,2700多张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

12、yolov5/yolov8/yolo11/yolo目标检测数据集,交通标志与行人车辆检测数据集,1500多张标注好的数据集(5类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

13、yolov5/yolov8/yolo11/yolo目标检测数据集,驾驶员行为检测数据集,9800多张标注好的数据集(5类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

14、yolov5/yolov8/yolo11/yolo目标检测数据集,钢材外观缺陷检测数据集,2300多张标注好的数据集(6类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

15、yolov5/yolov8/yolo11/yolo目标检测数据集,番茄叶病检测数据集,700多张标注好的数据集(7类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

16、yolov5/yolov8/yolo11/yolo目标检测数据集,道路裂缝检测数据集,370多张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

17、yolov5/yolov8/yolo11/yolo目标检测数据集,道路坑洼检测数据集,2000多张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

18、yolov5/yolov8/yolo11/yolo目标检测数据集,船只类型检测识别数据集,8400多张标注好的数据集(10类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

19、yolov5/yolov8/yolo11/yolo目标检测数据集,布料外观缺陷数据集,2100多张标注好的数据集(6类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

20、yolov5/yolov8/yolo11/yolo目标检测数据集,PCB缺陷检测数据集,近700张标注好的数据集(6类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

21、yolov5/yolov8/yolo11/yolo目标检测数据集,火灾与烟雾检测数据集,11896张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

22、yolov5/yolov8/yolo11/yolo目标检测数据集,太阳能光伏电池板缺陷检测数据集,2100张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

23、yolov5/yolov8/yolo11/yolo目标检测数据集,农作物叶片病害检测数据集,14282张标注好的数据集(3类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

24、yolov5/yolov8/yolo11/yolo目标检测数据集,变电站避雷器外观缺陷检测数据集,6475张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

25、yolov5/yolov8/yolo11/yolo目标检测数据集,安全帽是否佩戴检测数据集,14810张标注好的数据集(2类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

26、yolov5/yolov8/yolo11/yolo目标检测数据集,杂草检测识别数据集,4203张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

27、yolov5/yolov8/yolo11/yolo目标检测数据集,猫咪检测识别数据集,2781张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

28、yolov5/yolov8/yolo11/yolo目标检测数据集,狗狗品种检测识别数据集,23223张标注好的数据集(60类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

29、yolov5/yolov8/yolo11/yolo目标检测数据集,行人检测识别数据集,1000张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

30、yolov5/yolov8/yolo11/yolo目标检测数据集,公路车辆车流检测数据集,4058张标注好的数据集(12类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

31、yolov5/yolov8/yolo11/yolo目标检测数据集,中草药检测识别数据集,10000张标注好的数据集(45类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

32、yolov5/yolov8/yolo11/yolo目标检测数据集,风力发电机检测识别数据集,5096张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

33、yolov5/yolov8/yolo11/yolo目标检测数据集,变压器漏油故障诊断数据集,260张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

34、yolov5/yolov8/yolo11/yolo目标检测数据集,高压输电线故障检测数据集,1912张标注好的数据集(6类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

35、yolov5/yolov8/yolo11/yolo目标检测数据集,边坡排水沟堵塞数据集,2130张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

36、yolov5/yolov8/yolo11/yolo目标检测数据集,山坡、边坡和护坡等不同地形的断裂缺陷数据集及训练结果(含yolov8训练结果与模型),3284张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

37、yolov5/yolov8/yolo11/yolo目标检测数据集,山坡、边坡和护坡等不同地形的冲沟缺陷数据集及训练结果(含yolov8训练结果与模型),984张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

38、yolov5/yolov8/yolo11/yolo目标检测数据集,山坡、边坡和护坡等不同地形的滑坡缺陷检测数据集及训练结果(含yolov8训练结果与模型),6600多张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

39、yolov5/yolov8/yolo11/yolo目标检测数据集,CSGO人物识别数据集及训练结果(含yolov8训练结果与模型),3200张标注好的数据集(4类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

40、yolov5/yolov8/yolo11/yolo目标检测数据集,麦穗识别检测数据集,1690多张标注好的数据集(1类别,划分好的训练集,验证集和测试集、data.yaml文件),开箱即用

下面是YOLO11的YOLO11实战源码案例汇总目录【Python源码+Pyqt5界面+数据集+安装使用教程+训练代码】【附下载链接】,有需要的点击即可进入:

YOLO11实战源码案例汇总目录

YOLOv8实战源码案例汇总目录

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值