1. 卷积层
一般完整的CNN整个卷积神经网络,使用的层包括:
1.卷积层(Convolutional layer)
2.池层(Pooling layer)
3.全连接层(fully connected layer)
典型的cnn网络结构是由上述三类层构成:
在CNN中,卷积层(CONV)使用过滤器执行卷积操作。因为它扫描输入图像的尺寸。它的超参数包括滤波器大小,可以是2x2、3x3、4x4、5x5(或其它)和步长S。结果输出O称为特征映射或激活映射,具有使用输入层计算的所有特征和过滤器。
下面描绘了应用卷积的工作过程:
