DIAL算法计算单位流率-python实现

本文介绍了DIAL算法,一种基于路段分配流量的高效交通分配算法,并提供了Python实现的步骤详解,包括预处理、正向计算路段权重和反向分配路段流量。通过实例展示了如何求解网络的单位流率,使用Python编程语言,依赖于numpy和pandas库。还给出了程序的运行要求和流程图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

dail算法

DIAL算法又称STOCH算法,它基于路段分配流量,并将OD量仅仅加载到连接OD对的有效路径上,成功避免了路径枚举,被公认为是相当高效的Logit型随机网络加载算法。也就是说,DIAL算法并非利用Logit随机加载模型计算路径流量和路段流量,但结果却与这些公式吻合。

dail算法步骤

对OD起点r,DIAL算法执行如下3个步骤:
步骤1:预处理
(1)对 ∀ i ∈ N \forall i∈ N iN,计算从r到i的最短路径长度 r i r_i ri;
(2)对 ∀ ( i , j ) ∈ A \forall(i,j)∈ A (i,j)A,按下式计算路段似然值 L i j L_{ij} Lij
L i j = { e θ ( r j − r i − t i j ) , r i ≤ r j 0 , 其 他 L_{ij}=\left\{ \begin{aligned} e^{\theta(r_j-r_i- t_{ij})}, & {r_i \leq r_j} \\ 0, & 其他 \end{aligned} \right. Lij={ eθ(rjritij)0rirj
步骤2:正向计算路段权重
从r开始,按 r i r_i ri的升序依次处理每个节点i,即对 ∀ j ∈ F ( i ) \forall j∈ F(i) jF(i),按下式计算路段(i,j)的权重 w i j w_{ij} wij
w i j = { L i j , i = r L i j ∑ m ∈ B ( i ) w m i , 其 他 w_{ij}=\left\{ \begin{aligned} L_{ij}, & i= r \\ \\ L_{ij}\sum_{m∈ B(i)}{w_{mi}} , & 其他 \end{aligned} \right. wij=

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值