【论文阅读】Efficient Net

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.

自AlexNet赢得2012年ImageNet竞赛以来,CNN已成为用于深度学习中各种任务的实际算法,尤其是对于计算机视觉。
从2012年至今,研究人员一直在尝试并尝试提出越来越好的架构,以提高不同任务上模型的准确性。
今天,我们将深入研究最新的研究论文EfficientNet,该论文不仅着重于提高准确性,而且着重于模型的效率。

为什么model scaling非常的重要?

为什么要scaling? 在某些比赛任务上(例如ImageNet分类),要达到SOTA,有时候需要对模型进行改进,但是并不关心模型的效率。那为什么不可以在保证精度的情况下提升效率呢?这样是不是对模型的应用更加的友善呢?

CNN中scaling的定义

CNN的缩放比例分为三个维度:深度,宽度和分辨率
深度仅表示网络的深度,相当于其中的层数。
宽度仅表示网络的宽度。 例如,宽度的一种度量是Conv层中的通道数,而``分辨率’'只是传递给CNN的图像分辨率。
下图(来自论文本身)将使您清楚地了解缩放在不同维度上的含义。 我们还将详细讨论这些。
在这里插入图片描述

Depth Scaling (d)

按深度scaling网络是最常见的scaling方式。 通过分别添加/删除layer,可以按比例放大和缩小深度。 例如,可以将ResNets从ResNet-50扩展到ResNet-200,也可以将它们从ResNet-50扩展到ResNet-18。 但是为什么要深度scaling? 直觉是,更深的网络可以捕获更丰富,更复杂的功能,并且可以很好地概括新任务。
如果资源足够的话,按理说可以更多的增加网络的深度,但是实际上并非这么干的,因为ResNet-1000层也只是比ResNet-101提高了一点点的准确率而已。

Width Scaling (w)

可以增加网络的层的通道数,相反网络深度较浅,来完成某些网络的搭建。
问题是,即使您可以使网络变得非常宽,但使用较浅的模型(深度较小但较宽),准确性就会随着较大的宽度而迅速饱和。

Resolution ®

直觉上,我们可以说在高分辨率图像中,特征更

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值