How to Fine-Tune BERT for Text Classification?读论文

本文由复旦团队分享,研究BERT的进一步预训练和微调技术在文本分类中的应用。介绍了可变学习率、任务特定的预训练以及多任务学习等策略,并通过实验分析了不同方法的效果,如长文本处理、低资源场景下和BERT-Large的预训练等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:本文来自复旦的团队,主要探讨了bert的进一步预训练和微调来进行文本分类的内容。时值练习,那么聊到分本分类的大杀器bert,所以找到了这篇文章。

 

焦点主要聚焦在具体方法上:

一、方法

1.可变的学习率

2.进一步预训练(mask+nsp)

  1. 自己的数据集
  2. 同领域
  3. 跨领域

3.多任务

 

二、实验结果

1.微调策略

①长文本(>512)

  1. 截断,头510,尾510,,128头+382尾    (不考虑cls
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值