- 博客(8)
- 收藏
- 关注
原创 vanna_ai私有化部署(mysql数据库+Milvus向量库+Qwen2.5 LLM)
在上一篇博客https://blog.csdn.net/m0_37659226/article/details/145797076提到vanna_ai本地部署,但是用到的还是百炼平台的大模型,如果要使用自己本地部署的大模型要怎么做呢?本博客将介绍如何使用本地部署的Milvus向量库+Qwen2.5 来部署vanna_ai。
2025-02-22 17:44:21
1769
2
原创 vanna-ai本地部署(qdrant向量库+mysql数据库+qwen-plus llm)
Vanna AI 是一个多功能的数据分析和智能决策平台,旨在帮助企业通过自然语言与数据进行交互。它通过 自动生成 SQL 查询、智能报告、数据可视化等功能,可以大大提高工作效率,并支持 无编程知识的用户 直接与数据进行交互。Vanna AI 非常适合需要大量数据分析和报告生成的企业,特别是在 客户关系管理(CRM)、销售分析、市场研究等领域。本博客主要展示如何本地部署vanna。
2025-02-22 17:02:07
3198
2
原创 【ValueError: This output parser only works on ChatGeneration output解决方案】
pydantic_core._pydantic_core.ValidationError: 1 validation error for Generation text Input should be a valid string [type=string_type, input_value=ChatGeneration(text='你…tadata={}, type=‘text’)), input_type=ChatGeneration]
2024-12-28 22:09:09
1378
原创 关于linux下安装tensorflow-gpu的一些经历
关于linux下安装tensorflow-gpu的一些经历1 tensorflow-gpu == 1.13.1的安装2 手动下载cudnn的tar文件直接在linux上安装3 最终解决1 tensorflow-gpu == 1.13.1的安装笔者按照这位大佬的博客进行tensorflow-gpu==1.13.1的安装,将对应的cuda和cudnn的版本都从官网找好,开始下载安装https://blog.csdn.net/weixin_43325818/article/details/110673189
2021-08-31 17:05:01
405
原创 双线性插值法和nn.functional.conv_transpose2d()
双线性插值法和nn.functional.conv_transpose2d()nn.ConvTranspose2d和nn.functional.conv_transpose2d的区别双线性插值法原理使用nn.functional.conv_transpose2d()进行双线性插值nn.ConvTranspose2d和nn.functional.conv_transpose2d的区别##nn.ConvTranspose2d()——torch.nn.ConvTranspose2d(in_channe
2021-02-03 16:40:55
4163
6
原创 机器学习及应用第二章python初步习题2编程题
结束上一篇对matplotlib的图表描述后,接下来就看看scipy的相关应用——利用Scipy库函数对以下方程组求解这里我想吐槽一下,这本《机器学习及应用》人民邮电出版社的书出得真的不行,里面的内容就这对scipy的讲解讲得我一脸懵逼,怎么使用还真的不太会,看了别人对scipy求解方程组的博客才有点理解了(附上大神的详细讲解)https://blog.csdn.net/liangzuojiayi/article/details/78218089from numpy import mat,sin,
2020-07-28 23:36:50
238
3
原创 机器学习及应用——第二章python初步习题2编程练习
机器学习及应用——第二章python初步习题2编程练习编程练习——运用Matplotlib绘制下图所示的4个对数函数的二维图表,注意区分刻度线的位置和文本图片:话不多说,直接上代码——import matplotlib.pyplot as pltimport numpy as npplt.figure(figsize=(8,5),dpi=80)X = np.linspace(0.0,2.5,100,endpoint=True)l1 = np.log(X)/np.log(0.5)l2 =
2020-07-28 23:22:46
404
原创 关于背包问题动态规划代码的理解和应用
关于背包问题动态规划代码的理解和应用——首先,关于背包问题动态规划的详细讲解在https://v.youku.com/v_show/id_XMTQ3MzI0NzI2OA==.html这个视频链接有详细的介绍,在此引用某位大神制作的视频表示感谢,同时也说声抱歉在我的博客引用视频没有直接取得同意。关于视频中那个外国的网页也给上https://www.merlot.org/merlot/viewMat...
2019-02-03 18:42:30
702
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人