解决分割网络的结果一片黑的问题

这篇博客探讨了一个代码片段中的异常问题,主要涉及图像处理的预处理步骤。作者指出在原始代码中,图像和标签数据归一化时除以255缺少了小数点,导致潜在的精度损失。修复此错误后,预测结果得到了改善。文章强调了正确进行数据预处理对于模型性能的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

异常代码:

for f in files:
    img = cv2.imread('./dataset/images/' + f)
    # parts = f.split('_')
    # label_name = './dataset/labels/' + 'W0002_' + parts[1]

    label_name = './dataset/labels/' + f
    label = cv2.imread(label_name,2)

    img = cv2.resize(img,(w,h))
    label = cv2.resize(label,(w,h))

    images.append(img)
    labels.append(label)

images = np.array(images)
labels = np.array(labels)
labels = np.reshape(labels,
    (labels.shape[0],labels.shape[1],labels.shape[2],1))

print(images.shape)
print(labels.shape)

images = images/255
labels = labels/255

正确代码:

for f in files:
    img = cv2.imread('./dataset/images/' + f)
    # parts = f.split('_')
    # label_name = './dataset/labels/' + 'W0002_' + parts[1]

    label_name = './dataset/labels/' + f
    label = cv2.imread(label_name,2)

    img = cv2.resize(img,(w,h))
    label = cv2.resize(label,(w,h))

    images.append(img)
    labels.append(label)

images = np.array(images)
labels = np.array(labels)
labels = np.reshape(labels,
    (labels.shape[0],labels.shape[1],labels.shape[2],1))

print(images.shape)
print(labels.shape)

images = images/255.0
labels = labels/255.0

修改之后的预测结果:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值