相控阵天线(2)——一维线性阵列特性

       在《相控阵天线(1)》中,我们学到一维线性阵列天线的工作原理,在此基础上,我们了解一维线性阵列的特性。

一、波束调向

        根据《相控阵天线(1)》中公式(15)可知,如式(1):

\left| {​{E_n}(\theta )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {N(kd\sin \theta - \Delta \varphi )/2} \right)}}{​{\sin \left( {(kd\sin \theta - \Delta \varphi )/2} \right)}}} \right|(1)

当式(1)中kdsinθ-∆φ=0时,函数取得最大值1,此时可得到|E(θ)|天线方向图的最大值:

{\rm{sin}}{\theta _B}{\rm{ = }}\frac{​{\rm{1}}}{​{kd}}\Delta \varphi(2)

\Delta \varphi {\rm{ = }}kd{\rm{sin}}{\theta _B}(3)

式中,\theta _B为波束视线角。

       由此可知,当kd确定时,改变阵内相邻单元之间相位差∆φ,便可改变视线角\theta _B,即改变天线波束最大值指向。这就是相控阵天线名称的由来。如果∆φ由连续式移相器提供,则天线波束可实现连续扫描;如果∆φ由数字式移相器提供,则天线波束可实现离散扫描,移相器的位数越高,离散步长越小。

二、波束宽度

        将波数k = 2π/λ以及式(3)中∆φ与波束指向之间的关系代入原式(1)中,可得:

\left| {​{E_n}(\theta )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {\frac{​{\pi Nd}}{\lambda }(\sin \theta - \sin {\theta _B})} \right)}}{​{\sin \left( {\frac{​{\pi d}}{\lambda }(\sin \theta - \sin {\theta _B})} \right)}}} \right|(4)

波束指向为天线阵面法线方向时的宽度,这时\theta _B=0,即∆φ = 0,为各阵元等幅同相馈电情况。由式(4)可得方向性函数为

\left| {​{E_n}(\theta )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {\frac{​{\pi Nd}}{\lambda }\sin \theta } \right)}}{​{\sin \left( {\frac{​{\pi d}}{\lambda }\sin \theta } \right)}}} \right|(5)

通常情况下,波束很窄,|θ| 很小,sin[(πd/λ)sinθ]≈(πd/λ)sinθ,上式变为:

\left| {​{E_n}(\theta )} \right| = \left| {\frac{​{\sin \left( {\frac{​{\pi Nd}}{\lambda }\sin \theta } \right)}}{​{\frac{​{\pi Nd}}{\lambda }\sin \theta }}} \right|(6)

上式近似为辛克(Sinc)函数,当取Sinc[(πNd/λ)sinθ] = 0.707(即(πNd/λ)sinθ = 1.39)时,得到天线波瓣的半功率点位置,进而可计算出相控阵天线3dB波束宽度θ3为: 

{\theta _3} \approx \frac{​{0.886}}{​{Nd}}\lambda (rad) \approx \frac{​{50.8}}{​{Nd}}\lambda (^\circ )(7)

式中,Nd为线阵长度。当d = λ/2时

{\theta _3} \approx \frac{​{100}}{N}(^\circ )(8)

所以,在d = λ/2的条件下时,若要求\theta _3=1^{\circ},则所需要阵元数N=100。在二维线性阵列天线中,若要求水平和垂直面内的波束宽度都为1°,则需要100*100个阵元。

图1  水平和垂直面内的波束宽度均为1°的相控阵天线

当波束扫描时,波束偏离法线方向,如图8所示,θB ≠ 0时方向性函数用式(4)表示。波束较窄时,|θ-θB | 很小,sin[(πd/λ)(sinθ-sinθB)]≈(πd/λ) (sinθ-sinθB),式(4)可近似为:

\left| {​{E_n}(\theta )} \right| = \left| {\frac{​{\sin \left( {\frac{​{\pi Nd}}{\lambda }(\sin \theta - \sin {\theta _B})} \right)}}{​{\frac{​{\pi Nd}}{\lambda }(\sin \theta - \sin {\theta _B})}}} \right|(9)

图2  扫描时的波束宽度

       同理,式(9)为Sinc函数。设在波束半功率点上θ的值为\theta _+\theta _-,见图8,由辛克函数曲线,当Sinc(x)=0.707时,可查出x = ±0.443π,故知当\theta =\theta _+时应有

\frac{​{\pi Nd}}{\lambda }(\sin {\theta _ + } - \sin {\theta _B}) = 0.443\pi(10)

根据正弦差角公式,可得:

\sin {\theta _ + } - \sin {\theta _B} = \sin ({\theta _ + } - {\theta _B})\cos {\theta _B} - [1 - \cos ({\theta _ + } - {\theta _B})]\sin {\theta _B}(11)

当波束很窄时,\theta _+-\theta _B很小,式(11)中第二项可忽略,简化为

\sin {\theta _ + } - \sin {\theta _B} \approx ({\theta _ + } - {\theta _B})\cos {\theta _B}(12)

代入式(10),整理可得扫描时的波束宽度\theta _{3B}

\begin{array}{l} {\theta _{3B}} = {\theta _ + } - {\theta _ - } = 2({\theta _ + } - {\theta _B})\\ \approx \frac{​{0.886\lambda }}{​{Nd\cos {\theta _B}}}(rad) = \frac{​{50.8\lambda }}{​{Nd\cos {\theta _B}}}(^\circ ) = \frac{​{​{\theta _3}}}{​{\cos {\theta _B}}} \end{array}(13)

式中,\theta _3为波束在法线方向时的半功率波束宽度。上式也可从概念上定性地得出,因为波束总是指向同相馈电阵列天线的法线方向,将图8中的同相波前 MM'看成同相馈电的直线阵列,但有效长度为Ndcos{\theta_B},代入式(7)便得出式(13)。

       从式(13)可看出,波束扫描时,随着波束指向\theta _{B}的增大,\theta _{3B}要展宽,\theta _{B}越大,波束变得越宽。例如,\theta _B=60^{\circ}\theta _{3B}=2\theta _3

三、天线增益

       我们在讨论天线的有效面积时,得到:

{A_e} = \frac{​{G{\lambda ^2}}}{​{4\pi }}(14)

式中,A_e为天线孔径的有效面积,G为天线的功率增益。

       对于含有 N个半波振子单元的线阵天线,假设天线孔径面积为A,无损耗,孔径场均匀分布(即孔径面利用系数为1),阵元间距为d。若d=λ/2,则A = Nd2 =Nλ2/4。在法线方向上,A_e=A,代入式(14)得

G{\rm{ = }}N\pi(15)

      天线波束由法线方向扫描到\theta _{B}后,天线在方向有效孔径为A_e=Acos\theta _B,因此,此时的天线增益为

G = \frac{​{4\pi }}{​{​{\lambda ^2}}}A\cos {\theta _B}(16)

对于d=λ/2,有:

G = N\pi \cos {\theta _B}(17)

       所以,在波束扫描时,由于在\theta _{B}方向等效天线孔径面尺寸等于天线孔径面在等相面上的投影(即乘以cos\theta _B),与法线方向相比,尺寸减小,波束加宽,因而天线增益下降,且随着\theta _{B}的增大而加剧。所以波束扫描的角范围通常限制在±60°或±45°之内。若要覆盖半球,至少要有3个面天线阵,如图3所示。

图3  三阵面相控阵天线

四、栅瓣问题

       从第一节中公式(4)可以看出,

\left| {​{E_n}(\theta )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {\frac{​{\pi Nd}}{\lambda }(\sin \theta - \sin {\theta _B})} \right)}}{​{\sin \left( {\frac{​{\pi d}}{\lambda }(\sin \theta - \sin {\theta _B})} \right)}}} \right|(18)

(\pi Nd/\lambda )(sin\theta -sin\theta _B)=0,\pm \pi ,\pm 2\pi ,\cdots ,\pm n\pi(n为整数)时,分子为零,若分母不为零,则有F(θ)=0。而当(\pi d/\lambda )(sin\theta -sin\theta _B)=0,\pm \pi ,\pm 2\pi ,\cdots ,\pm n\pi(n为整数)时,上式分子、分母同为零,由洛比达法则得 F(θ)=1,由此可知 F(θ)为多瓣状,如MATLAB仿真图图4所示。其中,(\pi d/\lambda )(sin\theta -sin\theta _B)=0,即\theta =\theta _B时称为主瓣,其余称为栅瓣。

图4  一维线性阵列的归一化方向图

当波束指向在法线方向上(天线不扫描,\theta _B=0)时,即出现栅瓣的条件为:

\begin{array}{l} \frac{​{\pi d}}{\lambda }\sin \theta = \pm n\pi \\ \sin \theta = \pm n\frac{\lambda }{d} \end{array}(19)

       因此,仅当d≥λ时才可能产生栅瓣。d的取值越大,出现的栅瓣越多。例如,当d=λ时,出现两个栅瓣,如图所示,栅瓣的位置为:\theta _1= 90^{\circ}(n=1)\theta _2=- 90^{\circ}(n=-1)

图5  d = λ时栅瓣位置示意图

       当d=2λ时,出现四个栅瓣,如图所示,栅瓣的位置为 \theta _1= 90^{\circ}(n=2) \theta _2=- 90^{\circ}(n=-2)\theta _3= 30^{\circ}(n=1)\theta _4=- 30^{\circ}(n=-1)

图6  d = 2λ时栅瓣位置示意图

       由图5、6可以看出,出现栅瓣将会产生测角多值性,为避免出现栅瓣,需保证式(4)中分母控制在第一个周期范围内,只存在一个主瓣,需下式成立即可:

\left| {\frac{​{\pi d}}{\lambda }(\sin \theta - \sin {\theta _B})} \right| < \pi(20)

\frac{d}{\lambda } < \frac{1}{​{\left| {\sin \theta - \sin {\theta _B}} \right|}}(21)

\left |sin\theta -sin\theta _B \right |\leq 1+\left | sin\theta _B \right |,故不出现栅瓣的条件可取为:

\frac{d}{\lambda } < \frac{1}{​{1 + \left| {\sin {\theta _B}} \right|}}(22)

       当波长λ取定以后,只要调整阵元间距d以满足上式,便不会出现栅瓣。如要在-90^{\circ}\leq \theta _B\leq 90^{\circ}范围内扫描,则 d/λ <1/2。在第二节波束宽度中已经讨论过,当θB增大时,波束宽度也要增大,故波束扫描范围不宜取得过大,一般取\theta _B\leqslant 60^{\circ}\theta _B\leqslant 45^{\circ},此时分别是d/λ < 0.53或d/λ < 0.59。为避免出现栅瓣,通常选d/λ <1/2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值