相控阵天线(3)——平面相控阵天线原理

1.平面阵列概念

        平面阵列是线性阵列的自然延伸。平面阵列具有很多配置,取决于单元的间隔和所定义“网格”的分布。例子包括矩形的、圆形边界矩形的、圆形边界六边形的、圆形的、同轴圆形的网格,如图1所示。

图1  平面网格阵列

2.矩形网格阵列

      平面阵列可以在仰角和方位\left( {\theta ,\phi } \right)上扫描,图2所示为矩形网格阵列。沿着x方向和y方向的单元间隔各自表示为{d_x}{d_y}。通过《相控阵天线(1)——天线参数及一维线性阵列天线原理_相控阵的天线增益-CSDN博客》中对一维线性阵列天线的理论分析,可推导任意平面天线在远场观测点处总的电场表达为:

E(\theta ,\phi ) = \sum\limits_{i = 0}^{N - 1} {​{I_i}} {e^{j{\psi _i}(\theta ,\phi )}}(1)

       假设平面阵列由N \times M个天线单元组成,每个单元在x-y平面上按矩形网格排列,坐标为\left( {n \times {d_x},m \times {d_y}} \right)\left( {n = 0,1, \cdots ,N - 1;m = 0,1, \cdots ,M - 1} \right) ,如图2所示。设第\left( {n,m} \right)个单元的激励电流为{I_{n,m}},相邻单元之间相位延迟为\Delta {\varphi _{n,m}},则远场观测点处的电场可线性分解为它的xy分量。可以得到单元沿着xy方向分布的电场分量为:

{E_x}(\theta ,\phi ) = \sum\limits_{n = 0}^{N - 1} {​{I_n}} {e^{jn\left( {k{d_x}\sin \theta \cos \phi - \Delta {\varphi _n}} \right)}}(2)
{E_y}(\theta ,\phi ) = \sum\limits_{m = 0}^{M - 1} {​{I_m}} {e^{jm\left( {k{d_y}\sin \theta \sin \phi - \Delta {\varphi _m}} \right)}}(3)

其中,k = 2\pi /\lambda为波数,\theta为仰角,\phi 为方位角,\Delta {\varphi _n}为相邻单元之间在x方向上的相位延迟,\Delta {\varphi _m}为相邻单元之间在y方向上的相位延迟。则远场观测点处的总电场表示为各单元电场的矢量叠加:

\begin{array}{l} E(\theta ,\phi ) = {E_x}(\theta ,\phi ){E_y}(\theta ,\phi )\\ = \left( {\sum\limits_{n = 0}^{N - 1} {​{I_n}} {e^{jn\left( {k{d_x}\sin \theta \cos \phi - \Delta {\varphi _n}} \right)}}} \right)\left( {\sum\limits_{m = 0}^{M - 1} {​{I_m}} {e^{jm\left( {k{d_y}\sin \theta \sin \phi - \Delta {\varphi _m}} \right)}}} \right) \end{array}(4)

图2  平面矩形阵列示意图

       矩形阵列的单程强度方向图等于各自方向图的乘积。根据《相控阵天线(1)——天线参数及一维线性阵列天线原理_相控阵的天线增益-CSDN博客》中公式(15)可知,对于均衡的激励{I_n} = {I_m},可得:

\left| {E(\theta ,\phi )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {N(k{d_x}\sin \theta \cos \phi - \Delta {\varphi _n})/2} \right)}}{​{\sin \left( {(k{d_x}\sin \theta \cos \phi - \Delta {\varphi _n})/2} \right)}}} \right| \cdot \frac{1}{M}\left| {\frac{​{\sin \left( {M(k{d_y}\sin \theta \sin \phi - \Delta {\varphi _m})/2} \right)}}{​{\sin \left( {(k{d_y}\sin \theta \sin \phi - \Delta {\varphi _m})/2} \right)}}} \right|(5)

3.矩形网格阵列相控阵天线方向图特性分析

       辐射方向图的最大值、零点、副瓣、栅瓣在x轴、y轴上的计算和线性阵列的情况是相似的。另外,栅瓣控制的同样条件是可以应用的。注意,角度是对称的。以下结合《相控阵天线(2)一维线性阵列特性-CSDN博客》的内容,对平面相控阵天线方向图特性进行分析。

①波束调向

       当式(5)中k{d_x}\sin {\theta _0}\cos {\phi _0} - \Delta {\varphi _n} = 0, k{d_y}\sin {\theta _0}\cos {\phi _0} - \Delta {\varphi _m} = 0时,函数取得最大值1,此时可得到[\left| {E\left( {\theta ,\phi } \right)} \right|天线方向图的最大值,能量集中的最强波瓣,即主瓣,此时相位延迟∆φn,m需满足:

\begin{array}{l} \Delta {\varphi _n}{\rm{ = }}k{d_x}{\rm{sin}}{\theta _0}\cos {\phi _0}\\ \Delta {\varphi _m}{\rm{ = }}k{d_y}{\rm{sin}}{\theta _0}\sin {\phi _0} \end{array}(6)

 

②波束宽度

      将波数k = 2\pi /\lambda以及式(6)中\Delta {\varphi _{n,m}}与波束指向之间的关系代入原式(5)中,可得:

\left| {E(\theta ,\phi )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {Nk{d_x}(\sin \theta \cos \phi - \sin {\theta _0}\cos {\phi _0})/2} \right)}}{​{\sin \left( {k{d_x}(\sin \theta \cos \phi - \sin {\theta _0}\cos {\phi _0})/2} \right)}}} \right| \cdot \frac{1}{M}\left| {\frac{​{\sin \left( {Mk{d_y}(\sin \theta \sin \phi - \sin {\theta _0}\sin {\phi _0})/2} \right)}}{​{\sin \left( {k{d_y}(\sin \theta \sin \phi - \sin {\theta _0}\sin {\phi _0})/2} \right)}}} \right|(7)

波束指向为天线阵面法线方向时的宽度,这时{\theta _0} = 0,{\phi _0} = 0,即\Delta {\varphi _{n,m}} = 0,为各阵元等幅同相馈电情况。由式(4)可得方向性函数为

\left| {E(\theta ,\phi )} \right| = \frac{1}{N}\left| {\frac{​{\sin \left( {N(k{d_x}\sin \theta \cos \phi )/2} \right)}}{​{\sin \left( {(k{d_x}\sin \theta \cos \phi )/2} \right)}}} \right| \cdot \frac{1}{M}\left| {\frac{​{\sin \left( {M(k{d_y}\sin \theta \sin \phi )/2} \right)}}{​{\sin \left( {(k{d_y}\sin \theta \sin \phi )/2} \right)}}} \right|(8)

      通常情况下,波束很窄,\left| \theta \right|\left| \phi \right|很小,\cos \phi \approx 1\sin \left( a \right) \approx a,在 x 、y方向,上式变为:

\left| {​{E_x}(\theta ,\phi )} \right| = \left| {\frac{​{\sin \left( {\frac{​{\pi N{d_x}}}{\lambda }\sin \theta } \right)}}{​{\frac{​{\pi N{d_x}}}{\lambda }\sin \theta }}} \right|(9)
\left| {​{E_y}(\theta ,\phi )} \right| = \left| {\frac{​{\sin \left( {\frac{​{\pi M{d_y}}}{\lambda }\sin \theta \sin \phi } \right)}}{​{\frac{​{\pi M{d_y}}}{\lambda }\sin \theta \sin \phi }}} \right|(10)

上式近似为辛克(sinc)函数,当取\sin {\mathop{\rm c}\nolimits} \left( A \right) = 0.707(即A = 1.39)时,得到天线波瓣的半功率点位置,在 x 方向,半功率波束宽度\theta _{3x}近似为:

{\theta _{3x}} \approx \frac{​{0.886}}{​{N{d_x}}}\lambda (rad) \approx \frac{​{50.8}}{​{N{d_x}}}\lambda (^\circ )(11)

       y 方向半功率波束宽度{\phi _{3y}}公式类似: 

{\phi _{3y}} \approx \frac{​{0.886}}{​{M{d_y}{\rm{sin}}{\theta _0}}}\lambda (rad) \approx \frac{​{50.8}}{​{M{d_y}{\rm{sin}}{\theta _0}}}\lambda (^\circ )(12)

表明增大阵列规模\left( {N,M} \right)或减小扫描角{\theta _0}可压缩波束宽度,提高方向性。

③旁瓣与栅瓣

       理想情况下,平面相控阵可在\theta \in \left[ {0,{​{90}^ \circ }} \right]\phi \in \left[ {0,{​{360}^ \circ }} \right]范围内扫描,但实际受很多因素限制。当扫描角增大{\theta _0}时,等效单元间距在波前方向的投影增大,易激发栅瓣。通常要求扫描范围内{d_x}\sin \theta \cos \phi \le \lambda /2{d_y}\sin \theta \sin \phi \le \lambda /2,限制最大扫描角约为 60°~70°。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值