Redis Stream适配SpringBoot实现消息队列

本文探讨了Redis中的List作为简单消息队列的局限性,以及Pub/Sub模式在消息确认和持久化上的不足。接着介绍了Stream数据结构,它提供了消费者组和offset机制,类似于Kafka,支持消息的可靠性和唯一性。通过消费者组和pending_ids,Stream能确保消息至少被消费一次,并在服务中断后能恢复未确认的消息。文章还展示了如何在SpringBoot中集成Redis Stream,并给出了创建消费者和配置的示例代码,强调了其相对于其他消息组件的轻量级优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

众所周知redis数据结构中的list的lpush与rpop可以用于常规消息队列,从集合的最左端写入,最右端弹出消费。并且支持多个生产者与多个消费者并发拿数据,数据只能由一个消费者拿到。
但这个方案并不能保证消费者消费消息后是否成功处理的问题(服务挂掉或处理异常等),机制属于点对点模式不能做广播模式(发布/订阅模式)

Pub/sub

于是redis提供了相应的发布订阅功能,为了解除点对点的强绑定模式引入了Channel管道。
当生产者向管道中发布消息,订阅了该管道的消费者能够同时接收到该消息,而且为了简化订阅多个管道需要显式关注多个名称提供了pattern能力。
在这里插入图片描述

通过名称匹配如果接收消息的频道wmyskxz.chat,consumer3也会收到消息。
但这个方案也有很大的诟病就是不会持久化,如果服务挂掉重启数据就全丢弃了,也没有提供ack机制,不保证数据可靠性,不管有没有消费成功发后既忘。

Stream

stream的话整体结构很像kafka的设计思想,提供了consumer group和offset机制,结构上感觉跟kafka的topic差不多,只是没有对应partation副本机制,而是一个追加消息的链表结构。客户端调用XADD时候自动创建stream。每个消息都会持久化并存在唯一的id标识
在这里插入图片描述

consumer Group

消费者组的概念跟kafka的消费者概念如出一辙,消费者既可以用XREAD命令进行独立消费,也可以多个消费者同时加入一个消费者组。一条消息只能由一个消费者组中的一个消费者消费。这样可以在分布式系统中保证消息的唯一性。
其实这个特性我后来仔细琢磨了一下当时自认为无懈可击的流式图表为了保证分布式系统消息唯一做了redis分布式锁。。。。有点鸡肋,明明消费者组已经保证了数据的唯一性。。。。只能说加锁可以压缩资源成本。。。

last_delivered_id

用于标识消费者组消费在stream上消费位置的游标,每个消费者组都有一个stream内唯一的名称,消费者组不会自动创建,需要用XGROUP CREATE显式创建。

pending_ids

每个消费者内部都有一个状态变量。用来表示已经被客户端消费但没有ack的消费。目的是为了保证客户端至少消费了消息一次(atleastonce)。如果消费者收到了消息处理完了但是没有回复ack,就会导致列表不断增长,如果有很多消费组的话,那么这个列表占用的内存就会放大

curd api

• xadd 追加消息
• xdel 删除消息,这里的删除仅仅是设置了标志位,不影响消息总长度
• xrange 获取消息列表,会自动过滤已经删除的消息
• xlen 消息长度
• del 删除Stream

Pending_ids如何避免消息丢失

在客户端消费者读取Stream消息时,Redis服务器将消息回复给客户端的过程中,客户端突然断开了连接,消息就丢失了。
但是pending_ids里已经保存了发出去的消息ID。待客户端重新连上之后,可以再次收到pending_ids中的消息ID列表。
不过此时xreadgroup的起始消息必须是任意有效的消息ID,一般将参数设为0-0,表示读取所有的pending_ids消息以及自last_delivered_id之后的新消息。

嵌入SpringBoot

redis stream虽然还是有一些弊端,但是相比较而言用kafka之类的消息组件太重,redis用作消息队列已经很合适了。这里简单提一下思路,本质上是提供一个管理消息的一个小功能,定义一个注解用于创建stream管道
创建一个注解类,标注该注解的类必须继承StreamListener>类且重写onMessage方法。方法上也加这个注解

在这里插入图片描述

创建一个config类实现BeanPostProcessor接口,重写bean声明周期postProcessAfterInitializationpostProcessBeforeInitialization方法。该方法会在spring启动流程里的refresh方法加载bean的声明周期中扫描到所有加了注解的bean。
通过线程池挨个创建stream的group组与stream的consumer监听连接,config类记得继承DisposableBean类在destroy方法里把连接关掉免得oom。
注册redis stream api提供的consumer容器

@Bean("listenerContainer")
@DependsOn(value = "redisConnectionFactory")
public StreamMessageListenerContainer<String, ObjectRecord<String, Object>> init() {
   StreamMessageListenerContainer.StreamMessageListenerContainerOptions<String, ObjectRecord<String, Object>>
   options = StreamMessageListenerContainer.StreamMessageListenerContainerOptions.builder()
         .batchSize(10)
         .serializer(new StringRedisSerializer())
         .executor(new ForkJoinPool())
         .pollTimeout(Duration.ofSeconds(3))
         .targetType(Object.class)
         .build();
   return StreamMessageListenerContainer.create(redisConnectionFactory, options);
}

创建消费者

private Subscription createSubscription(RedisConnectionFactory factory, StreamListener streamListener, String streamKey, String group, String consumerName) {
   StreamOperations<String, String, Object> streamOperations = this.stringRedisTemplate.opsForStream();
   if (stringRedisTemplate.hasKey(streamKey)) {
      StreamInfo.XInfoGroups groups = streamOperations.groups(streamKey);
      AtomicReference<Boolean> groupHasKey = new AtomicReference<>(false);
      groups.forEach(groupInfo -> {
         if (Objects.equals(group, groupInfo.getRaw().get("name"))) {
            groupHasKey.set(true);
         }
      });
      if (groups.isEmpty() || !groupHasKey.get()) {
         creatGroup(streamKey, group);
      } else {
         groups.stream().forEach(g -> {
            log.info("XInfoGroups:{}", g);
            StreamInfo.XInfoConsumers consumers = streamOperations.consumers(streamKey, g.groupName());
            log.info("XInfoConsumers:{}", consumers);
         });
      }
   } else {
      creatGroup(streamKey, group);
   }
   StreamOffset<String> streamOffset = StreamOffset.create(streamKey, ReadOffset.lastConsumed());
   Consumer consumer = Consumer.from(group, consumerName);
   Subscription subscription = listenerContainer.receive(consumer, streamOffset, streamListener);
   listenerContainer.start();
   this.containerList.add(listenerContainer);
   return subscription;
}

具体的代码在gitee上,现在慢慢的扩展了一些别的组件,有兴趣可以去看看,或者有一些开发建议也可以私信下,后续想着可以加一些组件做大一点。
Gitee 消息流转组件服务

### 使用 Canal 实现 Redis 缓存与 MySQL 数据库双向同步 #### 1. 基本概念 Canal 是阿里巴巴开源的一款用于解析 MySQL Binlog 并提供增量数据订阅和消费的服务工具。它通过模拟 MySQL Slave 的行为,连接到 MySQL Master 上获取二进制日志(Binlog),从而实现实时捕获数据库变更并将其推送到目标存储系统中,例如 Redis。 为了实现 Redis 缓存与 MySQL 数据库之间的双向同步,通常采用单向同步的方式,即将 MySQL 中的数据变更实时同步至 Redis,而不会反向操作(即不从 Redis 更新回 MySQL)。这是因为 Redis 主要作为高速缓存层存在,其数据最终一致性依赖于底层关系型数据库的权威性[^1]。 --- #### 2. 配置方法 ##### 2.1 开启 MySQL Binlog 功能 在使用 Canal 进行数据同步之前,需确保 MySQL 已启用 Binary Log 功能,并设置相应的参数以便支持 Canal 正常工作: ```bash vim /etc/my.cnf ``` 添加或修改如下配置项: ```ini [mysqld] server-id=1 log-bin=mysql-bin binlog-format=ROW expire_logs_days=7 ``` 上述配置的作用分别是:指定服务器 ID、开启 binlog 记录功能、定义记录格式为 ROW 模式以及设定过期时间[^4]。 重启 MySQL 服务使更改生效: ```bash service mysql restart ``` --- ##### 2.2 安装部署 Canal Server 下载最新版本的 Canal 发布包后解压安装,进入 `conf/example/` 文件夹编辑实例配置文件 example.conf 。主要调整以下几个选项来适配自己的环境需求: - **srcDataSources**: 设置源端 MySQL 地址及相关认证信息; - **destDataSource**: 如果涉及多级转发可额外增加此字段指向下游其他 DB 或者 Kafka消息队列; - **tablePattern** : 明确需要监控哪些表发生变动; 更多细节参见官方文档说明[^3]。 --- ##### 2.3 编写监听逻辑代码 利用 Spring Boot 构建应用框架,在 POM 文件引入必要的依赖组件: ```xml <dependency> <groupId>com.alibaba.otter</groupId> <artifactId>canal.client</artifactId> <version>${canal.version}</version> </dependency> <!-- redis client --> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>4.x.x</version> </dependency> ``` 编写具体的事件处理器类,每当检测到来自 MySQL 表结构上的增删改动作时触发对应的操作去更新关联键值对存储中的状态表示形式[^5]: ```java public class CacheUpdater implements EntryHandler { private final Jedis jedis; public CacheUpdater(String host, int port){ this.jedis = new Jedis(host,port); } @Override public void handle(Entry entry) throws Exception{ RowChange rowChg = null; try{ rowChg = RowChange.parseFrom(entry.getStoreValue()); EventType eventType = rowChg.getEventType(); System.out.println(String.format("================> binlog[%s:%s], name=%s,%st",entry.getHeader().getLogfileName(),entry.getHeader().getLogfileOffset(), entry.getHeader().getSchemaName(),entry.getHeader().getTableName())); for(RowData rowData:rowChg.getRowDatasList()){ if(eventType==EventType.DELETE){ deleteCache(rowData.getBeforeColumnsList()); }else if(eventType==EventType.UPDATE){ updateCache(rowData.getAfterColumnsList()); }else if(eventType==EventType.INSERT){ insertIntoCache(rowData.getAfterColumnsList()); } } }catch(Exception e){ throw new RuntimeException("parse event has an error , data:" + entry,e ); } } private void deleteCache(List<Column> columns){ String key=getKeyByColumns(columns); jedis.del(key.getBytes()); } private void updateCache(List<Column> columns){ Map<String,String> fieldMap=new HashMap<>(); StringBuilder sb=new StringBuilder(); for(Column column:columns){ fieldMap.put(column.getName(),column.getValue()); sb.append(column.getName()).append("=").append(column.getValue()).append(","); } String value=sb.toString(); String key=getKeyByColumns(columns); jedis.setex(key.getBytes(),60*60,value.getBytes()); // set with expiration time one hour. } private void insertIntoCache(List<Column> columns){ updateCache(columns); } private static String getKeyByColumns(List<Column> cols){ return "CACHE_KEY:"+cols.stream() .filter(col->"id".equals(col.getName())) .findFirst() .map(Column::getValue) .orElseThrow(()->new IllegalArgumentException("Primary Key Not Found")); } } ``` --- #### 3. 最佳实践建议 - **幂等设计** :由于网络延迟等原因可能导致重复接收相同的消息,因此每次执行前都应该校验当前状态下是否已经完成了相应处理。 - **错误重试机制** :对于失败的任务考虑加入定时器或者异步线程池定期重新尝试直至成功为止。 - **性能优化** :批量提交减少频繁 IO 耗费资源开销;合理规划 TTL 时间避免长期占用内存空间浪费。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值