很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出一个整数,表示大臣J最多花费的路费是多少。
1 2 2
1 3 1
2 4 5
2 5 4
大臣J从城市4到城市5要花费135的路费。
首先想到floyd算法,显然超时能过75%数据。其实也能想到从1遍历整棵树,选择最远的结点end,再从end遍历一遍树即可得到最远距离。
代码:
#include <bits/stdc++.h>
using namespace std;
const int MAXN=10100;
struct Edge{
int v,w;
Edge(int vv,int ww):v(vv),w(ww){}
};
int n;
int dist[MAXN],max_len,End;
vector<Edge> G[2*MAXN];
void dfs(int u,int father,int len)
{
if(len>max_len)max_len=len,End=u;
for(int i=0;i<G[u].size();i++){
int v=G[u][i].v,w=G[u][i].w;
if(v==father)continue;
dist[v]=max(dist[v],len+w);
dfs(v,u,len+w);
}
}
int main()
{
int u,v,w;
while(~scanf("%d",&n))
{
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
G[u].push_back(Edge(v,w));
G[v].push_back(Edge(u,w));
}
max_len=0;
memset(dist,0,sizeof(dist));
dfs(1,-1,0);
memset(dist,0,sizeof(dist));
dfs(End,-1,0);
int ans=0;
for(int i=1;i<=n;i++){
ans=max(ans,dist[i]);
}
int tt=0;
for(int i=1;i<=ans;i++)
tt+=(10+i);
printf("%d\n",tt);
}
return 0;
}