蓝桥杯 大臣的旅费(dfs)

探讨了如何通过两次深度优先搜索找到树形图中两个节点间的最远路径,并计算大臣J在不休息的情况下,从一个城市到另一个城市的最高旅费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  历届试题 大臣的旅费  
时间限制:1.0s   内存限制:256.0MB
      
问题描述

很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数

城市从1开始依次编号,1号城市为首都。

接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)

每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式

大臣J从城市4到城市5要花费135的路费。


首先想到floyd算法,显然超时能过75%数据。其实也能想到从1遍历整棵树,选择最远的结点end,再从end遍历一遍树即可得到最远距离。


代码:

#include <bits/stdc++.h> 
using namespace std;   
 
const int MAXN=10100;  
  
struct Edge{  
    int v,w;  
    Edge(int vv,int ww):v(vv),w(ww){}  
};  
  
int n;  
int dist[MAXN],max_len,End;
vector<Edge> G[2*MAXN];
  
void dfs(int u,int father,int len)  
{  
    if(len>max_len)max_len=len,End=u;  
    for(int i=0;i<G[u].size();i++){  
        int v=G[u][i].v,w=G[u][i].w;  
        if(v==father)continue;  
        dist[v]=max(dist[v],len+w);  
        dfs(v,u,len+w);   
    }  
}  
  
int main()  
{  
    int u,v,w;  
    while(~scanf("%d",&n))
	{  
        for(int i=1;i<n;i++)
		{  
            scanf("%d%d%d",&u,&v,&w);  
            G[u].push_back(Edge(v,w));  
            G[v].push_back(Edge(u,w));  
        }
        
		max_len=0; 
        memset(dist,0,sizeof(dist));    
        dfs(1,-1,0);
        
		memset(dist,0,sizeof(dist));  
        dfs(End,-1,0);
		  
        int ans=0;  
        for(int i=1;i<=n;i++){  
            ans=max(ans,dist[i]);  
        }  
        int tt=0;  
        for(int i=1;i<=ans;i++)  
        tt+=(10+i);  
        printf("%d\n",tt);  
    }  
    return 0;  
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值