Leetcode_C++笔记之53. Maximum Subarray(最大子序列和)

该博客探讨了如何解决寻找整数数组中具有最大和的连续子数组的问题。提供了三种解决方案:暴力法(时间复杂度O(n^2))、动态规划(时间复杂度O(n))和分治法(递归)。示例代码分别展示了动态规划和分治法的实现,并给出了不同输入情况下的输出示例。此外,还提出了后续挑战,即使用分治策略实现更高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目名称

Maximum Subarray

题目描述

Given an integer array nums, find the subarray(连续的) which has the largest sum and return its sum.

Example 1:

Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:

Input: nums = [1]
Output: 1
Example 3:

Input: nums = [5,4,-1,7,8]
Output: 23

Constraints:

1 <= nums.length <= 105
-104 <= nums[i] <= 104

Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

思路

1,暴力法(O(n*n))
2, 动态规划
3,分治法(递归)

代码1

// dp
class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int dp;
        dp = nums[0];
        int max = dp;
        int tmp;
        for(int i=1; i<nums.size(); i++){
            tmp = dp+nums[i];
            if(nums[i]<tmp){
                dp = tmp;
            }else{
                dp = nums[i];
            }
            if(dp>max){
                max = dp;
            }
        }
        return max;
        
    }
};

代码2

// dq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值