定义 N(p,k)N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)N(p,k) 为 ppp 的 kkk 近邻(即与目标最接近的前kkk个样本):
N(p,k)={g10,g20,⋯,gk0},∣N(p,k)∣=kN\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right){\rm{ = }}\left\{ {{\mathop{\rm g}\nolimits} _{\rm{1}}^{\rm{0}} , {\mathop{\rm g}\nolimits} _{\rm{2}}^{\rm{0}}, \cdots , {\mathop{\rm g}\nolimits} _{\rm{k}}^{\rm{0}}} \right\}, \left| {N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)} \right| = {\rm{k}}N(p,k)={g10,g20,⋯,gk0},∣N(p,k)∣=k
显而易见,如果A与B相似,那么B与A也一定相似。因此可以定义目标ppp的kkk互近邻R(p,k)R\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)R(p,k)为:
R(p,k)={gi∣(gi∈N(p,k))∩(p∈N(gi,k))}R\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right){\rm{ = }}\left\{ {{{\mathop{\rm g}\nolimits} _{\rm{i}}}{\rm{|}}\left( {{{\mathop{\rm g}\nolimits} _{\rm{i}}} \in N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)} \right) \cap \left( {{\mathop{\rm p}\nolimits} \in N\left( {{{\mathop{\rm g}\nolimits} _{\rm{i}}}{\rm{, k}}} \right)} \right)} \right\}R(p,k)={gi∣(gi∈N(p,k))∩(p∈N(gi,k))}
即ppp与gig_igi互为近邻。显然,kkk互近邻比kkk近邻更加接近于ppp。