k互近邻

本文深入探讨了近邻算法中的N(p,k)与R(p,k)概念,解释了如何通过找到目标点的最近邻居来实现数据的分类与回归,强调了互近邻在提高算法准确性上的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

定义 N(p,k)N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)N(p,k)pppkkk 近邻(即与目标最接近的前kkk个样本):

N(p,k)={g10,g20,⋯,gk0},∣N(p,k)∣=kN\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right){\rm{ = }}\left\{ {{\mathop{\rm g}\nolimits} _{\rm{1}}^{\rm{0}} , {\mathop{\rm g}\nolimits} _{\rm{2}}^{\rm{0}}, \cdots , {\mathop{\rm g}\nolimits} _{\rm{k}}^{\rm{0}}} \right\}, \left| {N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)} \right| = {\rm{k}}N(p,k)={g10g20gk0},N(p,k)=k

显而易见,如果A与B相似,那么B与A也一定相似。因此可以定义目标pppkkk互近邻R(p,k)R\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)R(p,k)为:

R(p,k)={gi∣(gi∈N(p,k))∩(p∈N(gi,k))}R\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right){\rm{ = }}\left\{ {{{\mathop{\rm g}\nolimits} _{\rm{i}}}{\rm{|}}\left( {{{\mathop{\rm g}\nolimits} _{\rm{i}}} \in N\left( {{\mathop{\rm p}\nolimits} {\rm{, k}}} \right)} \right) \cap \left( {{\mathop{\rm p}\nolimits} \in N\left( {{{\mathop{\rm g}\nolimits} _{\rm{i}}}{\rm{, k}}} \right)} \right)} \right\}R(p,k)={gi(giN(p,k))(pN(gi,k))}

pppgig_igi互为近邻。显然,kkk互近邻比kkk近邻更加接近于ppp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值