推荐系统常见排序模型(一)

本文探讨了线上部署常用的编程语言如JAVA、C++、Go和TF-Serving,并提出性能优化方案,包括加机器和异步调用。此外,详细介绍了排序模型如LR和WideDeep的适用场景,以及GBDT+LR模型的训练策略。对于连续和离散特征,阐述了如何在GBDT与LR中结合使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.线上部署一般使用JAVA、C++、go或者TF-serving.

2.性能不够解决方案:加机器或者异步调用。每次用户请求的时候,假如计算500条推荐item,然后缓存下来。下次用户来的时候,不是重新计算,而是看这500条有没有消费完毕,如果没有消费完毕,则继续消费。如果消费完毕,在重新计算.

常用排序模型

LR: 合适高维稀疏特征。

WideDeep: 一般类别型特征和组合类特征放在Wide部分,因为如果放在deep部分,经过多层全连接后,特征的作用会减弱。业务特征和人工交叉特征一般也放在Wide部分,这些都属于强特征,我就是想记住它。

GBDT模型

决策树特别容易过拟合,所以一般不会使用单颗决策树进行训练模型,效果一般都不好。

CART树不论分类还是回归,分裂永远是MSE.

针对GBDT+LR模型,先使用GBDT训练样本,然后取叶子节点在过一边LR模型。模型的更新频率一般是GBDT模型的更新频率低于LR。

对于GBDT+LR模型,连续类特征,可以过一边GBDT,得到叶子节点,然后和离散类特征一起放入LR进行训练。


 

Xgbost

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值