【配准】2019医学图像配准中的深度学习综述论文解读(2)

 承接上文。本文是双监督、弱监督、自监督部分的总结和个人感想,见解较为粗浅, 还请同行多多指教。

 论文原文:Deep Learning in Medical Image Registration: A Survey

————————————————————————————————————————————————————————

四、弱监督或双监督的形变场估计

双监督:既选用扭曲后图像与参考图像的相似性测度也选用预测形变场与金标准之间的误差作为loss

[34]就是典型的例子,它的loss是两者的加权。

 

    双监督的另一个例子是[134],是用GAN来做的。 

 

       这篇论文的任务是对MR和TRUS图像进行刚性配准。生成器生成刚性变换的6个参数(输入是3维

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值