network in network

本文探讨了MLPConvolution的概念,指出其通过多层感知机提取localpatch的隐藏特征,弥补传统卷积操作的不足。同时,深入解析了GlobalPoolingLayer替代全连接层的优势,证实其在特征提取与正则化方面的显著效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、mlp convolution
local patch 只采取传统卷积操作,属于线性操作,无法提取出非线性特征。多层感知机可拟合复杂函数。因此,将local patch提取的特征接入到多层感知机中,以提取出该local patch的隐藏特征。
mlp中的神经元对应1*1的channel

在这里插入图片描述
在这里插入图片描述
2、globe pooling layer
以全局池化层取代全连接层,由于对local patch提取的都是高级特征,最终可保证得到的patch也是高级特征,此时,利用对feature map取均值后输入softmax进行分类即可。
经过实验验证,全局池化层也确有正则化功效
可以代替全连接层,正是由于local patch进行了复杂特征提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值