二叉树的每个结点至多只有两个孩子节点(不存在度大于2的结点),二叉树的孩子节点有左右之分,次序不能颠倒。
头文件:
btree.h
#ifndef __BTREE_H__
#define __BTREE_H__
#include "error.h"
#define BLEFT 0 //表示插入二叉树的左边
#define BRIGHT 1 //表示插入二叉树的右边
typedef char BTreeData; //事先声明
//二叉树的节点
typedef struct _btreeNode
{
BTreeData data;
struct _btreeNode *lchild; //指向左孩子节点的指针
struct _btreeNode *rchild; //指向右孩子节点的指针
}BTreeNode;
//二叉树
typedef struct _btree
{
BTreeNode *root; //指向二叉树的根节点
int count; //记录二叉树节点的个数
}BTree;
typedef void (*Print_BTree)(BTreeNode*);
// 创建一棵二叉树
BTree *Create_BTree();
// pos 走的路径 值类似 110(左右右) 011 (右右左)
// count 代表走的步数
// flag 代表被替换的结点应该插入在新节点的位置,如果是BLEFT 表示插在左边,BRIGHT表示插在右边
int Btree_Insert(BTree *tree, BTreeData data, int pos, int count, int flag);
//打印树
void Display (BTree* tree, Print_BTree pfunc);
//删除节点
int Delete (BTree *tree, int pos, int count);
//求树的高度
int BTree_Height (BTree *);
//求树的度
int BTree_Degree (BTree *);
//清空树
int BTree_Clear (BTree *);
//销毁树
int BTree_Destroy (BTree **);
// 前序遍历
void pre_order (BTreeNode *node);
//中序遍历
void mid_order (BTreeNode *node);
//后序遍历
void last_order (BTreeNode *node);
#endif // __BTREE_H__
源文件:
btree.c
#include "btree.h"
#include <stdlib.h>
#include <stdio.h>
// 创建一棵二叉树
BTree *Create_BTree()
{
BTree *btree = (BTree*)malloc(sizeof(BTree)/sizeof(char));
if (btree == NULL)
{
errno = MALLOC_ERROR;
return NULL;
}
btree->count = 0; //树节点个数为0
btree->root = NULL; //根节点指针为空,树为空
return btree;
}
// pos 走的路径 值类似 110(左右右) 011 (右右左)
// count 代表走的步数
// flag 代表被替换的结点应该插入在新节点的位置,如果是BLEFT 表示插在左边,BRIGHT表示插在右边
int Btree_Insert(BTree *tree, BTreeData data, int pos, int count, int flag)
{
if (tree == NULL || (flag != BLEFT && flag != BRIGHT))
{
return FALSE;
}
BTreeNode *node = (BTreeNode*)malloc(sizeof(BTreeNode)/sizeof(char));
if (node == NULL)
{
errno = MALLOC_ERROR;
return FALSE;
}
//初始化节点
node->data = data;
node->lchild = NULL;
node->rchild = NULL;
//找插入的位置
BTreeNode *parent = NULL;
BTreeNode *current = tree->root; //current一开始指向根节点,根节点的父节点是空
int way; //保存当前走的位置
while (count > 0 && current != NULL)
{
way = pos & 1; //取出当前走的方向
pos = pos >> 1; //移去走过的路线
//当前位置就是走完以后的位置的父节点
parent = current;
if (way == BLEFT) //往左走
{
current = current->lchild;
}
else //往右走
{
current = current->rchild;
}
count--;
}
//把被替换掉的节点插入到新节点下面
if (flag == BLEFT)
{
node->lchild = current;
}
else
{
node->rchild = current;
}
//把新节点插入到二叉树中,way保存了应该插入在父节点的左边还是右边
if (parent != NULL)
{
if(way == BLEFT)
{
parent->lchild = node;
}
else
{
parent->rchild = node;
}
}
else
{
tree->root = node; //替换根节点
}
tree->count++;
return TRUE;
}
//递归打印
void r_display(BTreeNode* node,Print_BTree pfunc,int gap)
{
int i;
if (node == NULL) //打印空孩子前的“-”
{
for(i = 0;i < gap;i++)
{
printf ("-");
}
printf ("\n");
return;
}
for (i = 0;i < gap;i++)
{
printf ("-");
}
//打印节点
//printf ("%c\n",node->data);
pfunc (node);
//若是左右孩子都为空,就不打印
if (node->lchild != NULL || node->rchild != NULL)
{
//打印左孩子
r_display (node->lchild,pfunc,gap+4);
//打印右孩子
r_display (node->rchild,pfunc,gap+4);
}
}
//打印树
void Display (BTree* tree, Print_BTree pfunc)
{
if (tree == NULL)
{
return;
}
r_display(tree->root,pfunc,0);
}
//递归删除
void r_delete (BTree *tree,BTreeNode *node)
{
if (tree == NULL || node == NULL)
{
return;
}
//先删除左孩子
r_delete (tree,node->lchild);
//删除右孩子
r_delete (tree,node->rchild);
free(node); //释放掉节点
tree->count--;
}
//删除节点
int Delete (BTree *tree, int pos, int count)
{
if (tree == NULL)
{
return FALSE;
}
//找节点
BTreeNode* parent = NULL;
BTreeNode* current = tree->root;
int way;
while (count > 0 && current != NULL)
{
way = pos & 1;
pos = pos >> 1;
parent = current;
if (way == BLEFT)
{
current = current->lchild;
}
else
{
current = current->rchild;
}
count--;
}
//将该节点从树上移除
if (parent != NULL)
{
if (way == BLEFT)
{
parent->lchild = NULL;
}
else
{
parent->rchild = NULL;
}
}
else
{
tree->root = NULL; //移除根节点
}
//释放节点
r_delete (tree,current);
return TRUE;
}
//递归求树的高度
int r_height (BTreeNode* node)
{
if (node == NULL)
{
return FALSE;
}
//求左孩子的高度
int lh = r_height (node->lchild);
//求右孩子的高度
int rh = r_height (node->rchild);
//节点的高度是孩子中最高的高度+1
return (lh > rh ? lh+1 : rh+1);
}
//求树的高度
int BTree_Height (BTree *tree)
{
if (tree == NULL)
{
return FALSE;
}
int ret = r_height(tree->root);
return ret;
}
//递归求树的度
int r_degree (BTreeNode *node)
{
if (node == NULL)
{
return 0;
}
int degree = 0;
if (node->lchild != NULL)
{
degree++;
}
if (node->rchild != NULL)
{
degree++;
}
//度为0代表没有左右孩子,度为2,代表树的度为2
if (degree == 1)
{
int ld = r_degree (node->lchild);
if (ld == 2)
{
return 2;
}
int rd = r_degree (node->rchild);
if (rd == 2)
{
return 2;
}
}
return degree;
}
//求树的度
int BTree_Degree (BTree *tree)
{
if (tree == NULL)
{
return FALSE;
}
int ret = r_degree(tree->root);
return ret;
}
//清空树
int BTree_Clear (BTree *tree)
{
if(tree == NULL)
{
return FALSE;
}
Delete (tree,0,0); //删除根节点
tree->root = NULL;
return TRUE;
}
//销毁树
int BTree_Destroy (BTree **tree) //二级指针
{
if (tree == NULL)
{
return FALSE;
}
BTree_Clear (*tree);
free (*tree);
*tree = NULL;
return TRUE;
}
// 前序遍历
void pre_order (BTreeNode *node)
{
if (node == NULL)
{
return;
}
printf ("%4c", node->data); //最先打印根节点
pre_order (node->lchild);
pre_order (node->rchild);
}
//中序遍历
void mid_order (BTreeNode *node)
{
if (node == NULL)
{
return;
}
mid_order (node->lchild);
printf ("%4c", node->data); //中间打印根节点
mid_order (node->rchild);
}
//后序遍历
void last_order (BTreeNode *node)
{
if (node == NULL)
{
return;
}
last_order (node->lchild);
last_order (node->rchild);
printf ("%4c", node->data); //最后打印根节点
}
关于二叉树的更多的操作,比如非递归实现二叉树遍历,可以大家一起去实现。