pytorch的理解-pytorch在CPU->GPU上的训练
https://www.cnblogs.com/zle1992/p/9047905.html
1、cpu->gpu迁移原理
将模型和数据从内存复制到GPU的显存中,就可以使用GPU进行训练,其操作方法是将数据和模型都使用.cuda()方法。
2、判断GPU是否可以使用:
通过torch.cuda.is_available()来返回值判断GPU是否可以使用
通过torch.cuda....
原创
2019-07-03 11:30:06 ·
2978 阅读 ·
0 评论