Photoshop图像算法(二)(代码在每个原理后面)

Photoshop图像平移算法

Photoshop中图像平移算法的原理主要涉及图像的坐标系变换。图像平移是将图像在其坐标系中移动一定的距离,其基本步骤和原理如下:

1. 坐标系的理解

图像通常被表示为一个二维数组,其中每个像素都有一个对应的坐标(x, y)。x坐标表示水平位置,y坐标表示垂直位置。原点(0,0)通常位于图像的左上角。

2. 平移变换

图像平移实际上是对像素坐标进行一系列简单的数学运算。给定一个平移向量 (tx, ty),可以通过以下公式实现平移:

  • 新坐标 (x', y') = (x + tx, y + ty)

3. 边界处理

在图像进行平移时,像素可能会移动到图像外部。在这种情况下,有几种处理方法:

  • 裁剪:移动后超出边界的部分将被裁剪掉。
  • 填充:超出边界的区域可以用特定的颜色(如黑色或白色)进行填充。
  • 重复边界:超出边界的部分可以用边缘像素进行重复。

4. 图像插值

在进行平移时,尤其是当平移量不是整数时,某些像素的新位置会落在原来像素之间,这时需要进行插值计算,以确定新像素的颜色值。常见的插值方法包括:

  • 最近邻插值:选择距离最近的像素值。
  • 双线性插值:考虑周围四个像素的加权平均值。
  • 立方插值:通过更复杂的数学模型,对多个像素进行加权,通常效果更好。

5. 实现步骤

在Photoshop等图像处理软件中,实现图像平移的步骤通常如下:

  1. 获取需要平移的图像数据。
  2. 定义平移的距离(tx, ty)。
  3. 对每个像素应用平移公式,计算新的坐标。
  4. 根据处理策略(裁剪、填充、重复等)处理边界像素。
  5. 使用插值方法计算新坐标对应的像素值。
  6. 生成新的图像,并显示或保存。

通过以上步骤,就可以实现对图像的平移操作。这些基本原理和方法在图像处理领域广泛应用。

     

// 移出的区域填充255
//tx:X方向的平移量
//ty: Y方向的平移量
//flag: 是否扩大图像,0:不扩大,1:扩大
Mat Translate(Mat src, int tx, int ty, bool flag) {
	int row = src.rows;
	int col = src.cols;
	if (flag) {//扩大
		Mat dst(row + abs(ty), col + abs(tx), CV_8UC3);
		int height = dst.rows;
		int width = dst.cols;
		for (int i = 0; i < height; i++) {
			int i0 = i - ty;
			if(i0 >= 0 && i0 < height){
				for (int j = 0; j < width; j++) {
					int j0 = j - tx;
					if (j0 >= 0 && j0 < col && i0 >= 0 && i0 < row) {
						for (int k = 0; k < 3; k++) {
							dst.at<Vec3b>(i, j)[k] = src.at<Vec3b>(i0, j0)[k];
						}
					}
					else {
						for (int k = 0; k < 3; k++) {
							dst.at<Vec3b>(i, j)[k] = 255;
						}
					}
				}
			}
			else {
				for (int j = 0; j < width; j++) {
					for (int k = 0; k < 3; k++) {
						dst.at<Vec3b>(i, j)[k] = 255;
					}
				}
			}
		}
		return dst;
	}
	else {
		Mat dst(row, col, CV_8UC3);
		if (tx < -col || tx > col || ty < -row || ty > row) { //整个移出图像区域,则直接返回
			dst = Scalar::all(0);
			return dst;
		}
		int height = dst.rows;
		int width = dst.cols;
		for (int i = 0; i < height; i++) {
			int i0 = i - ty;
			if (i0 >= 0 && i0 < height) {
				for (int j = 0; j < width; j++) {
					int j0 = j - tx;
					if (j0 >= 0 && j0 < width && i0 >= 0 && i0 < height) {
						for (int k = 0; k < 3; k++) {
							dst.at<Vec3b>(i, j)[k] = src.at<Vec3b>(i0, j0)[k];
						}
					}
					else {
						for (int k = 0; k < 3; k++) {
							dst.at<Vec3b>(i, j)[k] = 255;
						}
					}
				}
			}
			else {
				for (int j = 0; j < width; j++) {
					for (int k = 0; k < 3; k++) {
						dst.at<Vec3b>(i, j)[k] = 255;
					}
				}
			}
		}
		return dst;
	}
}

图像镜像翻转算法

在Photoshop或类似图像处理软件中,图像镜像翻转算法的原理主要涉及对图像的像素进行重新排列。镜像翻转通常有两种形式:水平翻转和垂直翻转。

水平翻转

原理:
在进行水平镜像翻转时,图像的每一行保持不变,但每一行内的像素位置会发生变化。具体操作如下:

  1. 获取图像的宽度 W 和高度 H
  2. 对于每一行,从左到右遍历每个像素:
    • 将第 x 列的像素 (位置 (x, y)) 替换为第 W - x - 1 列的像素。
  3. 结果是左右反转的图像。

伪代码:

for y in range(H):
    for x in range(W // 2):
        temp = image[y][x]
        image[y][x] = image[y][W - x - 1]
        image[y][W - x - 1] = temp

python复制代码

垂直翻转

原理:
在进行垂直镜像翻转时,图像的每一列保持不变,但每一列内的像素位置会发生变化。具体操作如下:

  1. 获取图像的宽度 W 和高度 H
  2. 对于每一列,从上到下遍历每个像素:
    • 将第 y 行的像素 (位置 (x, y)) 替换为第 H - y - 1 行的像素。
  3. 结果是上下反转的图像。

伪代码:

for x in range(W):
    for y in range(H // 2):
        temp = image[y][x]
        image[y][x] = image[H - y - 1][x]
        image[H - y - 1][x] = temp

python复制代码

复杂度分析

  1. 时间复杂度:对于每个像素,水平和垂直翻转的时间复杂度都是 O(N),其中 N 是图像中的像素总数。
  2. 空间复杂度:通常是 O(1),如果对图像进行原地翻转,不需要额外的空间。

总结

镜像翻转算法通过重新排列图像的像素,简单地反转了图像的左右或上下顺序。这些操作在图像编辑和处理应用中非常常见,且通常会在内存中直接操作图像数据,以提高处理速度。

//flag=1水平镜像,flag=-1垂直镜像
Mat Mirror(Mat src, int flag) {
	int row = src.rows;
	int col = src.cols;
	Mat dst(row, col, CV_8UC3);
	if (flag == 1) {
		for (int i = 0; i < row; i++) {
			for (int j = 0; j < col; j++) {
				for (int k = 0; k < 3; k++) {
					dst.at<Vec3b>(i, j)[k] = src.at<Vec3b>(i, col - 1 - j)[k];
				}
			}
		}
	}
	else {
		for (int i = 0; i < row; i++) {
			for (int j = 0; j < col; j++) {
				for (int k = 0; k < 3; k++) {
					dst.at<Vec3b>(i, j)[k] = src.at<Vec3b>(row - 1 - i, j)[k];
				}
			}
		}
	}
	return dst;
}

图像错切算法

图像错切(Shearing)是一个几何变换的过程,它会沿特定的方向对图像进行变形。错切可以在水平或垂直方向上进行,或是两者结合。下面是错切算法的基本原理:

1. 错切变换矩阵

错切的数学表示通常使用一种变换矩阵,针对任意一个点 ((x, y)),通过矩阵乘法可以得到新的坐标 ((x', y'))。常见的错切变换矩阵有两种:

  • 水平错切矩阵
    [
    \begin{pmatrix}
    1 & k_x \
    0 & 1
    \end{pmatrix}
    ]

  • 垂直错切矩阵
    [
    \begin{pmatrix}
    1 & 0 \
    k_y & 1
    \end{pmatrix}
    ]

其中,(k_x) 和 (k_y) 是水平和垂直错切因子,决定了错切的程度。

2. 变换过程

使用上述矩阵来变换一个点的过程如下:

对于一个点 ((x, y)):

  • 水平错切:计算新坐标 ((x', y'))
    [
    x' = x + k_x \cdot y
    ]
    [
    y' = y
    ]

  • 垂直错切:计算新坐标 ((x', y'))
    [
    x' = x
    ]
    [
    y' = k_y \cdot x + y
    ]

3. 实现步骤

在图像处理软件中实现图像错切通常包含以下几个步骤:

  1. 确定错切因子:选择水平或垂直的错切因子。
  2. 计算变换:根据变换矩阵计算每个像素的新位置。
  3. 创建新图像:生成一个空白图像,并根据计算出的新位置将原图像中的像素映射到新图像中。
  4. 插值处理:当新位置不是整数时,可能需要进行插值,以决定新图像中的像素值。

4. 应用

图像错切可以用在许多图像处理应用中,比如创建斜视效果、图像变形、图像剪辑等。

在Photoshop或其他图像处理软件中,用户可以方便地使用图像错切工具,通过输入错切因子来实现所需效果。实际应用中,软件会自动处理坐标计算和像素映射。

//图像错切
//flag=1,水平错切; flag=-1, 垂直错切
//水平方向: x2=(x1-y1*tan(theta))
//         y2=y1
const double PI = 3.1415926;
Mat Slant(const Mat &src, float angle, int flag) {
	int rows = src.rows;
	int cols = src.cols;
	float ftan = fabs((float)tan(angle / 180.0*PI));
	int newHeight = 0;
	int newWidth = 0;
	if (flag == 1) { //水平方向高度不变
		newHeight = rows;
		newWidth = (int)(cols + rows*fabs(ftan));
	}
	else {//垂直方向宽度不变
		newHeight = (int)(rows + cols*fabs(ftan));
		newWidth = cols;
	}
	Mat dst(rows, cols, CV_8UC3);
	for (int i = 0; i < newHeight; i++) {
		for (int j = 0; j < newWidth; j++) {
			int newi, newj;
			if (flag == 1) {
				newi = i;
				newj = j + ftan * (i - rows);
			}
			else {
				newi = i + ftan * (j - cols);
				newj = j;
			}
			if (newi >= 0 && newi < rows && newj >= 0 && newj < cols) {
				for (int k = 0; k < 3; k++) {
					dst.at<Vec3b>(i, j)[k] = src.at<Vec3b>(newi, newj)[k];
				}
			}
			else {
				for (int k = 0; k < 3; k++) {
					dst.at<Vec3b>(i, j)[k] = 255;
				}
			}
		}
	}
	return dst;
}

更多PS代码请关注我上传的资源文件。

https://download.csdn.net/download/m0_44975814/89896121

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值