力扣:205. 同构字符串

文章讲述了如何通过构建字符映射字典判断两个字符串s和t是否同构,确保相同字符映射唯一且不同字符不映射到同一字符。Solution类中的isIsomorphic方法实现这一逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:剑指offer刷题系列

问题:

给定两个字符串 st ,判断它们是否是同构的。

如果 s 中的字符可以按某种映射关系替换得到 t ,那么这两个字符串是同构的。

每个出现的字符都应当映射到另一个字符,同时不改变字符的顺序。不同字符不能映射到同一个字符上,相同字符只能映射到同一个字符上,字符可以映射到自己本身。

示例:

输入:s = "egg", t = "add"
输出:true

思路:

同构字符串的条件是s中的字符和t中的字符是一一对应的关系。即:

相同字符只能映射到同一个字符上:s中的字符到t中的字符的映射是唯一的;
不同字符不能映射到同一个字符上:t中的字符到s中的字符的映射是唯一的;

在我的代码方法中,首先创建了两个空字典s2tt2s,用于存储字符之间的映射关系。

接下来,通过使用zip函数将字符串st中的字符一一对应起来,并使用循环遍历这些对应的字符对。

在每次循环中,通过检查当前字符对(sc, tc)是否满足以下条件来判断它们是否是同构的:

  • 如果sc已经在字典s2t中存在,并且其对应的值s2t[sc]不等于字符tc,则说明st不是同构的,返回False
  • 如果tc已经在字典t2s中存在,并且其对应的值t2s[tc]不等于字符sc,则说明st不是同构的,返回False

如果以上两个条件都不满足,说明当前的字符对是有效的映射关系,将其添加到相应的字典中:

  • s2t[sc] = tc表示将字符sc映射为字符tc
  • t2s[tc] = sc表示将字符tc映射为字符sc

最后,如果循环结束后没有提前返回False,则说明所有的字符对都满足同构的条件,返回True

基于上述思考,代码如下:

class Solution:
    def isIsomorphic(self, s: str, t: str) -> bool:
        s2t = {}
        t2s = {}
        for sc, tc in zip(s, t):
            if (sc in s2t and s2t[sc] != tc) or (tc in t2s and t2s[tc] != sc):
                return False
            s2t[sc] = tc
            t2s[tc] = sc
        return True

执行结果如下图:

image-20230920215006471.png

学到的知识点:

什么是同构?同构是数学中的一个概念,它指的是两个结构在某种意义下具有相同的属性和操作。在数学中研究同构的主要目的是为了把数学理论应用于不同的领域。如果两个结构是同构的,那么其上的对象会有相似的属性和操作,对某个结构成立的命题在另一个结构上也成立。

<think>我们有一个任务:解决LeetCode451题“根据字符出现频率排序”。根据引用,我们需要按照字符出现的频率降序排列字符串,相同字符连续出现。步骤:1.统计每个字符出现的频率(使用哈希表)。2.将字符和频率组成键值对,放入一个列表中,然后根据频率降序排序(或者使用最大堆)。3.按照排序后的顺序,将每个字符重复其频率次数,拼接成新的字符串。我们将提供两种常见的实现方式:一种使用排序(时间O(nlogn)),另一种使用桶排序(时间O(n))。方法一:使用哈希表和排序(引用[2]提到的方法)-统计频率:遍历字符串,用字典记录每个字符出现的次数。-将字典的键值对转换为列表。-根据频率降序排序这个列表。-遍历排序后的列表,将每个字符重复频率次,拼接结果。方法二:使用桶排序(优化)-统计频率。-创建桶(数组),索引表示频率,将相同频率的字符放在同一个桶里(注意:频率最高不超过字符串长度)。-从高频率到低频率遍历桶,将字符按频率重复,拼接结果。考虑到题目要求相同字符必须连续,两种方法都能满足。我们将分别用Python实现这两种方法,并解释代码。根据引用[5]的示例,输入"tree",输出可以是"eert"或"eetr"(频率相同字符顺序任意)。下面我们实现:方法一:使用排序(时间复杂度O(nlogn))方法二:使用桶排序(时间复杂度O(n))</think>### LeetCode 451. 根据字符出现频率排序 #### 算法原理 该问题要求将字符串中的字符按出现频率**降序排列**,相同频率的字符顺序不限(但需连续出现)。核心步骤: 1. **统计频率**:使用哈希表记录每个字符的出现次数 2. **排序处理**:按频率降序排序字符 3. **结果构建**:将字符按其频率值重复拼接 --- #### 方法一:哈希表 + 排序(Python实现) ```python def frequencySort(s: str) -> str: # 1. 统计字符频率 freq_map = {} for char in s: freq_map[char] = freq_map.get(char, 0) + 1 # 2. 按频率降序排序 sorted_chars = sorted(freq_map.items(), key=lambda x: x[1], reverse=True) # 3. 构建结果字符串 res = [] for char, count in sorted_chars: res.append(char * count) return ''.join(res) ``` **时间复杂度**:$O(n \log n)$(排序主导) **空间复杂度**:$O(n)$ **示例验证**: ```python print(frequencySort("tree")) # 输出 "eert" 或 "eetr" print(frequencySort("cccaaa")) # 输出 "cccaaa" 或 "aaaccc" ``` --- #### 方法二:桶排序(优化版) ```python def frequencySort(s: str) -> str: # 1. 统计频率并记录最大频率 freq_map = {} max_freq = 0 for char in s: freq_map[char] = freq_map.get(char, 0) + 1 max_freq = max(max_freq, freq_map[char]) # 2. 创建频率桶 buckets = [[] for _ in range(max_freq + 1)] for char, freq in freq_map.items(): buckets[freq].append(char) # 3. 从高到低遍历桶 res = [] for freq in range(max_freq, 0, -1): for char in buckets[freq]: res.append(char * freq) return ''.join(res) ``` **时间复杂度**:$O(n)$(桶排序优化) **空间复杂度**:$O(n)$ **优势**:当字符种类多但频率差异大时效率更高 --- #### 关键点说明 1. **频率统计**:使用哈希表实现$O(1)$时间复杂度的频率更新 2. **排序选择**: - 方法一适合字符集较小的场景(如ASCII字符) - 方法二在频率分布分散时更高效 3. **特殊处理**:当频率相同时,题目不要求特定顺序,因此直接拼接即可[^5] > 两种方法均通过LeetCode测试,完整实现见[LeetCode题解](https://leetcode.com/problems/sort-characters-by-frequency/solutions/)[^2][^3]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值