第一章 - 第6节- 数制转换 - 课件

28 篇文章 ¥9.90 ¥99.00
本文详细介绍了数制转换的基本概念,包括十进制、八进制、二进制和其他进制,以及它们之间的转换方法。重点讲解了二进制与十进制、八进制与二进制、十六进制与二进制之间的转换规则,并提供了多个转换实例和相关课堂练习,帮助读者深入理解数制转换原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第6节 数制转换

一、进位计数制的基本概念

将数字符号按序排列成数位,并遵照某种由低位到高位的进位方式计数表示数值的方法,称作进位计数制。

1.十进制

十进制计数制由0,1,2,3,4,5,6,7,8,9共10个数字符号组成。相同数字符号在不同的数位上表示不同的数值,每个数位计满十就向高位进一,即"逢十进一"。

2.八进制

八进制计数制由0,1,2,3,4,5,6,7共8个数字符号组成。相同数字符号在不同的数位上表示不同的数值,每个数位计满八就向高位进一,即"逢八进一"。

3.二进制

二进制计数制由0和1共两个数字符号组成。相同数字符号在不同的数值,每个数位计满二就向高位进一,即"逢二进一"。

4.其他进制

在日常生活和工作中还会使用其他进制数。如:十二进制数、十六进制数、百进制数和千进制数等。无论哪种进制数,表示的方法都是类似的。如:十六进制数由0、1、2、3、4.5、6、7、8、9、A、B、C、D、E和F共16个符号组成,"逢十六进一"C、D、E和F分别表示10、11、12、13、14和15六个数字符号。

5.基数与权

某进制计数制允许选用的基本数字符号的个数称为基数。一般而言,J进制数的基数为J,可供选用的基本数字符号有J个,分别为0到J-1,每个数位计满J就向高位进一,即"逢J进一"。

某进制计数制中