基于Laplacian图谱的短文本聚类算法

该论文提出了一种基于Laplacian图谱的短文本聚类方法,针对短文本数据的高维、特征难提取和噪音多的问题。通过Laplacian矩阵求解特征值,选择强关联特征进行降维,提高了聚类准确度和收敛速度,并增强了对噪音数据的鲁棒性。方法包括:词频向量矩阵的Laplacian处理、选择前K个特征值作为聚类中心,以及利用余弦相似度进行数据分配和聚类中心更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文笔记:[1]孟海宁,冯锴,朱磊,张贝贝,童新宇,黑新宏.基于Laplacian图谱的短文本聚类算法[J].电子学报,2021,49(09):1716-1723.

论文笔记内容包括:应用场景、优势亮点、方法步骤

应用场景

短文本是生活中极其常见的内容形式,手机短信、用户评论及微博话题等都属于短文本,对短文本进行聚
类分析具有重要的应用价值,如对用户评论进行观点挖掘、对社交媒体进行话题检测以及舆情预警等。

由于短文本数据的特点,会导致传统的聚类算法对短文本聚类精度不高且收敛速度较慢,特点如下:

  1. 特征维数高
  2. 特征难提取
  3. 噪音数据多

其主要的三个方面原因如下:

  1. 对于非结构化或半结构化的短文本数据,文本向量维度高,聚类结果不准确
  2. 初始聚类中心随机选择,可能导致算法的时间开销过大
  3. 短文本数据特征稀疏,聚类过程易受到噪声数据影响,算法鲁棒性差

优势亮点

至今的方法都没能解决这两个问题

  1. 短文本数据聚类收敛速度慢
  2. 短文本数据集中的噪音数据对算法的鲁棒性影响

对于上面两个问题,基于Laplacian图谱的短文本聚类方法能较好的解决。

该文依据Laplacian矩阵求解特征值,将矩阵特征值按大小排列,即对短文本的多个特征值 按照与聚类主题关联程度排序,强关联特征在前,次要特征在后,选择前K个特征值去除统计特征性较弱的次要特征,从而对数据集进行降维处理,避免了维度爆炸

优点

  1. 避免短文本数据的维度爆炸,提高聚类的准确度
  2. 聚类收敛速度快
  3. 对噪音的鲁棒性较好

方法步骤

主要工作

  1. 对原始数据集的词频向量矩阵进行Laplacian矩阵化处理,将短文本数据在低维度下表示文本间的相似关系(提高聚类准确度)
  2. 根据Laplacian矩阵的图谱聚类特性,求解Laplacian矩阵的特征值,表示特征词在文本中的重要性,选择前K个特征向量作为初始聚类中心,而不是像传统聚类算法那样随机选取初始聚类中心(减少聚类的迭代次数,提高收敛速度)
  3. 在短文本数据集上人工加入不同比例的噪音数据,以此证明该方法具有较强的鲁棒性。

算法流程

  1. 输入数据集
  2. 数据预处理:利用NLTK工具包,对数据集进行标记化分词,去除停用词,词性标注及词干提取
  3. 特征提取
    1. 将预处理后的数据集映射到向量空间,转换为TF-IDF词频矩阵Q
    2. 计算词频矩阵Q的Laplacian矩阵L
    3. 求L的前K个特征值对应的特征向量,组成矩阵R【降维】
  4. Laplacian图谱聚类算法
    1. 将矩阵R按特征值大小排序
    2. 选取R前K个特征值对应的特征向量,作为初始聚类中心
    3. 根据特征向量夹角的余弦值,将每个数据对象分配到最近的类
    4. 重新计算聚类中心
    5. 判断算法收敛,Y:输出聚类结果,N:回到3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

路过的风666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值